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Abstract

This report presents a model for an integrated

design data base that will be used within an integrated

design system for microelectronics. This report also

describes a model of an integrated design system, whose

functions include a single, flexible interface between the

designer and the design system. These two models provide

a conceptual-level design of a Design Automation System;

however, the emphasis in this report is on the data base

model.

The results described in this report are two of

the models necessary for the design of a Design Automation

(DA) System. The first model is a high-level design which

shows the components and the interactions of these com-

ponents within the DA System. The second model constitutes

the design at the conceptual-level of the data base

required by the DA System. This data base, called an

Integrated Design Data Base, is an integral part of the

DA System. The model of the data base defines the data

requirements of the design tasks within the microelectronic

design cycle.
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CHAPTER I

INTRODUCTION

Introduction

The challenge addressed in this report is to design

models of a Design Automation System (DA System) including

its integrated data base. This model development is a

first step in designing a tool that will be used in the

design of microelectronic devices (ICs, PCBs, Hybrids).

This tool (DA System) has often been designed and imple-

mented separately with largely unsuccessful results.

Instead, there must be a coordinated effort, integrating

the designs of both the DA System and its data base. This

coordinated desi.gn is necessary because there is a symbiotic

relationship between the DA System and the data base.

Therefore, decisions must be considered with both the data

base and the DA System taken into account. "The data base

is needed to tie all the elements of the design together

and to allow automation. The design must be integrated

into the CAD data base [6:5501." As used in this report,

the data base embedded in the DA System will be called an

Integrated Design Data Base (IDDB), because it is an Inte-

grated (into the DA System) Design (type of data contents)

Data Base (IDDB)
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The design of the DA System including its IDDB

described in this report will support hierarchical design

without a prespecified selection of design representations.

The design of the DA System and the IDDB models is founded

on current Software Engineering and Data Base Design Tech-

niques. The objective guiding the design was to concentrate

on providing an interface to design data and to design tools

that would improve the efficiency and effectiveness of the

designer's work.

Important Concepts

Independence

Data Independence. The object of data independence

is to clearly differentiate between the logical and

physical aspects of data base management. These differ-

ences include data base design (total system), data retrie-

val (physical), and data manipulation (logical). The major

advantage of data independence in model design work is that

it provides a protective "buffer" against damage, or data

integrity problems, which are caused by growth and restruc-4
turing of the data base (27:106). Growth and restructur-

ing are the components that force disconcerting changes

in a data base. Two of these buffers are required, in both

a data base model as well as a DA system model. Each buffer

will protect against the major components of data integrity

problems; i.e., growth and restructuring. These two

2



buffers are defined to be physical and logical data inde-

pendence.

Physical Data Independence. This term implies data

and program immunity to changes in the physical storage

structure. This means that the physical storage organiza-

tion and its implementation may be changed without changing

either the logical structure of the data or the Application

Program's data concerns. Other authors call this term

"Hardware Independence."

Logical Data Independence. This term implies data

and program immunity to changes in the data model. This

means that the total logical structure of the data may be

changed, but these changes will not affect the Application

Programs (AP). Other authors call this term "Software

Independence."

Schema

Conceptual Schema. This term represents the entire

data base as an abstract model description that provides a

mapping function between the logical and physical schemas.

The conceptual schema is the framework which will hold the

values of the data items. This data base model, the con-

ceptual schema, is independent of hardware and software

considerations. Therefore, the conceptual schema is both

physically and logically independent. Data independence

3



is required to keep the conceptual schema as stable and

as long-lasting as possible. Stability is needed in the

design because the conceptual schema is the foundation upon

which the rest of the design is built. The other two

components of the data base model, physical and logical

* schemas can and will change, but the conceptual schema

should not change. Instead, it is designed to be resistant

to change, if its two buffers work properly.

Physical Schema. This is the storage organization

of the data base including its implementation on some

storage media. Storage mechanisms and access methods are

elements of the physical schema. The physical data struc-

ture is the form in which the data is recorded on the

storage media. This characteristic of the data base model

provides the physical data independence required by the

canonical schema.

Logical Schema. This term is a description of the

data as seen by the users of the data base. Each user, or

'4 each design task, has its own view of the data (called a

task-view in this report, sub-schema by other authors)

which consists of definitions of each of the data items,

their relationships, and the format of the data as seen by

the design task. The logical data structure is the struc-

ture of the data as required by a design task. This

4



representation of the data base model provides the logi-

cal data independence required by the canonical schema.

Considerations. The need to create an integrated

design system with the data base and application programs

integrated into the system has been generated by micro-

electronic design complexity design tool incompatibility,

and the designer's need for automated design tools that are

easily and effectively used. LSI/VLSI/VHSI circuits must

be designed quicker, cheaper, reliably, and more testable,

despite the increased complexity of the design process.

The approach taken in this report is that VLSI/VHSI

circuit design must be done using an automated design sys-

tem that is composed of a set of integrated design tools

and associated data bases. The integration of the data

bases makes up the core of the integrated design system

and provides the key to the integration of the entire DA

system. The design system utilized here is called a Design

Automation System. It includes an Integrated Design Data

Base (IDDB), which is an essential, and in fact an inherent

element of such a Data System. Thus, when DA System capa-

bilities and functions are discussed, it is assumed that

the IDDB is a part of this system.

Designing and implementing an integrated DA system

is difficult because of the many functional components of

such a system. These required components include Applica-

tion Programs (AP), an operating system, peripheral

5



interfaces, interprocess communications, a Data Base Man-

agement System (DBMS), and user interfaces. However, the

key component of the DA System is the Integrated Design

Data Base.

But what is possibly the most important, the vari-
ous software pieces of the CAD puzzle--usually incom-
patible programs written at different universities in
different languages running on the different operating
systems of different computers--are being knitted
together into cohesive operational programs drawing
upon unified data bases [9:74].

The IDDB is characterized by the access and the use

of a centralized data base by the design tools or APs.

The data is physically stored independently of the soft-

ware that will access it; and the data is accessed by the

software independently of the storage medium. This data

independence characteristic of the IDDB must be "designed-

into" the model from the beginning. Furthermore, it is

essential for the model to be physically and logically

independent.

Design Considerations

There are three major views of a data base design,

each of which must be designed in turn. These three views

are called the conceptual, logical, aid physical views or

schemas of the data base. This report describes a

conceptual-level model, conceptual schema, of an IDDB.

The DA System will be designed similarly to its

IDDB. Because of integrated design decisions that must

6
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be made, the DA System and IDDB must be designed in concert.

The DA System must be designed at the conceptual-, logical-,

and physical-level before implementation. This report also

includes a description of a conceptual-level model of a DA

System.

The first and most important element of the design

process is the conceptual-level design.

The CAD data base system [has] two major design
goals: to unify existing CAD tools and to provide a
nucleus for future growth. To meet these goals, a
data base structure [more properly, a data base SCHEMA
that defines such a structure] has to be defined. .
[22:401].

It is especially important in this report because of its

*emphasis on the model design of the IDDB. The conceptual

schema design will describe the integration of the data.

The conceptual schema will also define the data requirements

of the data base with a flexible specification of the data

requirements, which will allow the design to absorb changes

and growth to the data base. The

conceptual model [conceptual schema] plays a
crucial role in the data base design process: first,
it provides the framework within which user require-
ments must be identified and understood. Second, the
model [conceptual model] provides a specification
mechanism for communicating the global conceptual view
of the enterprise [11:546].

~P u rpo se

The purpose of this report is to present the

conceptual-level model design of the DA System and its

IDDB. The DA System model will be described in relatively

7
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general terms, with its component parts, and the data and

control paths defined. These component parts include the

Executive, DBMS, APs, and Data Dictionary. The IDDB model

will be described in greater detail. A complete conceptual

schema model of the IDDB will be developed and explained.

All of the data requirements and the organization of the

data will be described through the design of the conceptual

schema.

The two major components of this report are the

IDDB and the DA System. They each have a symbiotic rela-

tionship to each other. The DA System is the environment

for the Integrated Design Data Base. Thus, the data base

is dependent on the design of the DA System. However,

because of the dynamic nature of the DA System's applica-

tion programs, the DA System demands that the data base

which supports the APs must be physically and logically

independent. This explains the DA System and the IDDB

interdependence. The author maintains, that to adequately

describe the DA System and its IDDB, both must be designed

in concert.

Another reason to design an IDDB and a DA System

together is that VLSI/VHSI circuit design demands a DA

System with an integrated design data base. The literature

(10:353) clearly shows that with today's design complexi-

ties, automated design cannot be done by the "bag of tools"

approach. Present designs are so complex that structured

8
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engineering approaches are being used in design work.

These same structured approaches must be engineered into

the design tools (AP) and techniques used by the designer.

The effective use of these computer programs neces-
sitates structured design applications so that the
complexity of the design and verification tasks is
reduced to a manageable level. Large amounts of data
and a variety of design representations are used for
each circuit. Thus, it is important that an integrated
set of computer aids, coupled with a unified approach
to data management, be provided to the IC designer
[12:1197].

Once the present design tool problems ("bag of tools"

approach), are solved, the designers can return to the true

microelectronics design problems, because a usable set of

integrated tools facilitating design work will have been

developed.

Design tools are needed, which include a DA System,

IDDB, and application programs, that can be easily used by

designers, and have no inherent problems of their own.

These tools should be just as easy and as flexible for the

designer to use as a paint brush or a hammer are to a

painter or a carpenter. The designer should not be aware

of the data base, the DA System, or the individual require-

ments of these design tools. Instead, the designer should

only be faced with the problem of the design itself. To

provide such design tools, the DA System and its data base,

must be transparent to the designer, and perform all tasks,

quietly and responsively.

I9
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Goal s

The goals of this thesis are to:

1. Provide the reader with a clear understanding

of both the background of the problem and its solution. In

* providing this description, the characteristics of the

problem that cause the greatest design difficulties will

be described, along with a discussion of the major factors

that are essential in creating a solution.

2. Describe the software engineering and data

base design techniques and the design approach used during

the design efforts.

3. Present important, known data requirements for

the design tasks to be performed by the DA System, and char-

* 'acterize these design tasks.

4. Conceptually design the DA System, and use this

design as a model to describe the environment of the IDDB.

Insure the DA System and the IDDB designs are physically

and logically independent of hardware and software considera-

tions.

5. Conceptually design the Integrated Design Data

Base and describe the data contents and the data relation-

ships within the data base.

6. Provide recommendations concerning the imple-

mentation and the maintenance of the IDDB.

10



Overview

As previously stated, the purpose of this report

is to provide a conceptual-level model of the DA System and

its Integrated Design Data Base. The first three chapters

provide the essential introductory information concerning

this report's design efforts. Chapter II discusses the

important background elements of both the design challenges

(problems) and the solutions to these challenges. Once the

reader has a grasp of the important characteristics of the

background, Chapter III provides an explanation of the soft-

ware engineering and data base design techniques and the

design approach that was used.

The DA System model is presented in Chapter III.

This design is presented in two parts: (i) the organization,

and (2) the usage of the DA System. Chapter V presents the

conceptual-level model of the IDDB. This design consists

of an explanation of the individual relationships of the

data, the information content of these relationships,

and the total system view of this representation of the

4 IDDB.

Conclusions are given in Chapter VI that discuss

how the six goals outlined above were met by the work

4 described in this report. Functions of the Data Base

Administrator (DBA) along with important characteristics

of the data base models and a DBMS are discussed in

i11



Chapter VII. Recommendations are also provided in Chap-

ter VII which describe the implementation of the DA System

including its IDDB.

12
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CHAPTER II

BACKGROUND

Introduction

In a broad sense, the Age of Microelectronics has

arrived. New ways are being discovered daily to use micro-

electronic devices in unique ways. In addition, greater

demands are being placed on the performance characteristics

of microelectronic devices. These additional uses and

demands have an effect on the design of these devices.

The effect is that the designs are becoming more complex

which causes the design problems to increase.

The designer has to bear the additional burdens

created by the increased complexity of the microelectronic

design. In the past the designer developed the need for

design tools to help in the design process. Out of neces-

sity, the designer is being aided by the use of computers.

The purpose of design automation computer programs is to

minimize the complexity of the design tasks for the designer.

Computer use by designers is a source of help. Unfor-

tunately, it is also a source of problems. Computer use

certainly helps reduce the complexity of the design work,

but the computer is not an easy design tool because of

inflexibility in responding to different designer require-

ments.

13



The objective of this report is to improve the com-

puter's usability for the designer's work on microelectronic

design. The problems to be addressed in this report are

some of the factors that negatively affect the computer's

usability. These problems must be overcome if truly effec-

tive use of computer-aided design tools is to be realized.

Background to the Problem

The problems are basically generated from two

sources which are characteristics of:

1. the microelectronic design environment, and

2. the designer.

This background text will describe the basic problem areas

of these two sources. It should be remembered that charac-

. 7 teristics of these two problems are interrelated.

As a prefacing remark, it should be noted here

that there is a difference between "incorporating" versus

"integrating" software tools or data bases into a design

system. "Incorporating" implies that the tools and data

bases are gathered and are available for a designer's use;

in effect, a "bag of tools" approach. CAD Systems are

usually nothing more than this, containing diverse data

bases with a different data base for each application pro-

gram. "Integrating" implies that there is an integrated

design data base, where all of the design tools access one

data base and the boundaries between individual programs

are "fuzzy." The boundaries are "fuzzy" because designers

14



do not have to re-submit the entire design description data

for each Application Program (AP) used. The majority of

the design description has already been supplied from pre-

vious AP runs. There is only a small amount of additional

data required to augment the present design. For a DA

System to function as described here it must have inte-

grated data bases as well as integrated design tools.

Growth

The microelectronic design field has grown rapidly;

consequently, the design tools and techniques are changing.

The diversity of the design problems and the complexity

of the solutions to these design problems have grown. The

knowledge required and skills required for the designer to

perform an effective job using the new design tools and tech-

niques have also increased dramatically.

This growth has affected not only the designer's

performance but also the design tools created to minimize

the design complexities. Usable design tools that will

provide solutions for the design problems are needed and

4 are causing researchers to improve the present design tools.

But the rapid pace of microelectronic changes tends to

prevent researchers from designing for the future. Instead,

new tool development requirements are driven by today's

problems, but end Up being yesterday's solutions. There

are "two co,1qtants found in design automation systems--

growth and change [35:464]." Not only are the tools being

15
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developed too late, but in the past they were not being

designed well (18).

Designers

Veteran designers are accustomed to having complete

control and knowledge of their design work. However, it

is almost impossible for one person or even one team to be

aware of all the advances and potential ways to solve

present design problems. This often means that viable

design tools exist to be used, but the tools are not a

coherent set. Furthermore, they cannot be easily con-

catenated into an incorporated system. Thus, use of the

design tools (application programs, design systems, data

base, etc.) that can help solve the design problem often

introduce more problems. These new problems can be in the

form of translation' from one data format to another, from

one computer representation to another (60 bits to 32 bits,

ASCII to EBCD1C, etc.), new input/control languages, or

different data base formats. An example of a designer's

nightmare is controlling design data integrity, which can

easily cause problems in an incorporated design system.

For instance, the design may have to be manually checked

to prove that the resultant design of an AP is logically

and functionally equivalent to the design input to the AP.

Incompatible data may make it impossible to deter-
mine if, say, the circuit simulated with logic simu-
lator is in fact the same circuit simulated via the
circuit simulator [2:108].

16



Bag of Tools Approach

New microelectronic design problems are forcing

* the designer to use new design tools. Often, to avoid

losing personal control of the design, the designer may

begin to design using the "bag of tools" approach. The

typical solution is to find stable, understandable design

techniques that allow personal design control, contain

only a couple of input/control languages to learn, and safe

data (i.e., card deck stored on desk). This solution typi-

fies the "bag of tools" approach, also called an incorpo-

rated CAD System.

Incorporated CAD Systems

Many incorporated CAD systems are inefficient and

unresponsive to the designer's needs. They require differ-

ent control languages for each different Application Pro-

gram. The different APs also require the design data to

be reformatted for each AP. Thus, each AP must be provided

all the data required in its own format, and the syntax

and contents of the data must also be correct. The inter-.4

face programs that were needed to convert the data format

from one program's format to another were also a hinder-

ance. So, CAD Systems tended to be either too imposing to

learn how to use, or too frustrating because of the con-

stant updates to new interfaces for the application pro-

grams.

17
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A

Within the microelectronic design field there are

whole companies and sciences devoted to specialized sec-

tors of this diverse field. For each sector, design tools

and related elements are developed, which include:

1. specialized software,

2. standardized component and electrical char-

acteristic libraries,

3. design rules,

4. individual data bases for each software

package, and

5. specialized input/output control command

requirements.

A design system consists of a collection of these above

design tools and related elements. There are huge amounts

of redundancies, overhead and interface programs and data

requirements that must be contended with when using a design

system that only "incorporates" the design tools. These

are elements of the problem to be solved and they make the

computer very difficult to use for design work. Thus, an

incorporated design system is difficult and inefficient

to use, and the

waste [was] centered around the development
" and use of many translators which [are] needed to con-

vert data files from the format of one application pro-
gram to that of another. The main concern of user
[designer] frustration came from the diversity of
input foremats and diagnostics which forced the user
to become familiar with many different languages

e [10:353].
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Data Bases

There are data problems to be addressed that affect

the usability of design systems. Designers have experi-

enced the lack of data integrity and this is a very serious

data base problem. It is very difficult for the designer

to verify the integrity of the design data. Briefly, data

integrity is the preservation of data items, their associa-

tions, and their values. In this case, to verify data

• integrity, the designers are concerned that the design data

has not been lost or compromised (changed). There are two

ways to perform the verification: (1) compare the data

character-by-character, or (2) have an accurate data manage-

ment function, which will monitor and maintain the design

WV data. Difficulty in verifying the design data is another

factor that causes the designer to find that design systems

are difficult to use and inflexible.

Example

A simple example representing an incorporated CAD

system with diverse data bases should show the relevant

problems. Consider a car requiring mechanical repair.

Experts are required to perform mechanical repairs. An

expert has the special skills, knowledge, and tools that

must be used to make proper repairs. An expert is usually

limited to only one field. Thus, there is an incorporated

group of expert mechanics that will be used to work on the
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car. An expert in fan belts is required to change the fan

belt. After the change is accomplished, the alternator

is diagnosed as needing repair or replacement, so the

alternator is replaced. The job is very difficult because

the fan belt gets in the way. But the replacement is made

in spite of the difficulty. The ability to replace the

alternator, with the fan belt in the way, is the major skill

required in alternator repair. During the process of

changing the alternator, the fan belt is often moved, maybe

forcing readjustment. Next, the generator must be replaced,

which requires another expert. This time both the alter-

nator and the fan belt are in the way, and both get acci-

dentally moved. Thus, the generator replacement may force

reiteration of the two previous repairs. This exemplifies

how each step of a design (replace) or a verification

(adjust) can have a rippling effect throughout the system

(engine).

As in the preceding example, design programs and

their data constantly change, and each data format or input/

control language change causes a ripple, affecting all sub-

sequent programs and data bases. During each step of the

design cycle, data can be mistyped or translation programs

may introduce errors. These are comparable to the acci-

dental readjustments that the mechanics were doing on the

car parts. And even more importantly, it can be seen that

the major skill required is the knowledge of how to get the
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job done in spite of the non-integration of skills (input/

control languages) and tools (data bases). The "bag of

tools" (division of tools) approach has also led to optimi-

zation and total design problems. ". . the division has

blindered designers, forcing them to attempt optimization

without regard to its impact on the overall circuit [2:108]."

The redundant "specialized" skills or tools (i.e.,

translators), and knowledge required for each application

program (seen in the above example) are easily reduced.

The reduction occurs as a result of a DA system because of

the integration of its design data base and AP.

Each CAD program usually has its own unique input
language, library, and data storage. The designer must
take the time to learn each input language, and, even
worse, must specify the particular design (often with

'II redundancy, sometimes with error) for each program he
desires to use. For example, circuit connectivity must
be given in different forms for logic simulation, test
generation, and circuit layout programs [22:399].

The proper implementation of an Integrated Design Data Base

to be used within the context of a well-conceived DA System

will provide a flexible and usable design tool solution for

the designer.

Background to the Solution

The objective of the solution is to provide the

design of a usable set of tools that can be applied by the

designer for microelectronic design work. The designer

must be able to use the tools efficiently (little wasted

motion and time) and effectively (accurate design). "The
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design community must perceive that use of the data automa-

tion tool will cost-effectively result in a tangible benefit

[5:5] ."

Introduction to Elements

of the Solution

The problem background section discussed the exist-

ing problems in the absence of elements of the solution.

As previously mentioned, the elements which comprise the

solution are the use of Software Engineering, Data Base

Design Techniques and Tools, a Design Automation System,

and an Integrated Design Data Base.

Software Engineering. The author has noted a dis-

tinct lack of software engineering tools and techniques

used in the design and implementation of existing CAD soft-

ware (14:21,23).

The notion of software engineering was introduced
in 1968, to refer to the goal of applying traditional
forms of engineering discipline to the production of
software [16:431.

The cause of the software engineering deficiencies, the

author believes, is because most of the software developed

up until the late 70s was written by the designers who only

wrote the program or software module to solve specific,

parochial design problems. Because software engineering

concepts are relatively new, the concepts were not used to

design incorporated design systems.
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Some of these inferior practices include: insuffi-

cient documentation, hardware-dependent software scattered

throughout the program modules, and software modules which

are strongly coupled and have loose cohesion. Usually there

is no input/output interfaces to other programs, very few

standardized data formats, and difficulty in interfacing

most associated data bases.

Software engineering tools and techniques, while

relatively new, have proliferated because of the software

development industry. There is a critical need for a struc-

tured, engineering approach to software design and develop-

ment. Software is much too complex to design without

software "design rules." Using software engineering tech-

4niques, the resulting software has become far easier to use,

debug, maintain, and comprehend. During the software

development, implementation, and verification phases, some

of today's software, such as DBMS and data base models, can

now be designed and analyzed with mathematical rigor.

Software engineering techniques are used in the

model design of the DA System and itr IDDB presented in this

report. Once the discussion of the design of the DA System

and its IDDB is complete, software engineering techniques

4| are used to provide ways to comprehensively view these com-

plex designs. Thus, use of software engineering techniques

allows the complexity of the design to be minimized and the

informational content of the design to be maximized.

23
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- •Data Base Design. An integrated design data base

used by a DA System does not normally evolve out of the

*" presently used diverse data bases existing within an

incorporated CAD System. Therefore, the IDDB was carefully

designed using Data Base Design techniques. These tech-

niques are a subset of software engineering techniques.

Essentially, general software engineering techniques are

applied to specific data base design problems. Thus, a

structured engineering approach was taken during the design

of the Integrated Design Data Base model.

Integrated Design Data Base. One of the goals of

an IDDB is similar to that of a DA System. The goal of a

DA System is to reduce the impact of software, hardware,

and data base changes to existing AP. This is similar to

the IDDB goal, which is to isolate the logical and physical

data structures from the AP, or logical and physical inde-

pendence.

The design of the IDDB must begin with the design of

the information structure as the first step. This informa-

tion structure is an abstraction from the complexity of the

real world into a logical structure consisting of informa-

tion needed for the IDDB. The second step is to reduce the4
information structure into a data structure suitable for

management by a DBMS (4:113). While using the IDDB, the

designer's design data will not be under personal control.
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However, the data integrity and redundant data problems

previously experienced with diverse data bases will dis-

appear through use of an integrated design system. The

designer will find an added plus with the maintenance,

update, and validation procedures that will now be avail-

able for use. Thus, using the proper software engineering

techniques, and designing the DA system in concert with the

IDDB, should provide designers with the design tools that

they have needed.

DA Systems. As previously discussed, there are

many problems concerning the usability of a DA system. Good

DA Systems have been built, but the majority of these

___ design systems described in the literature, still have

designer complaints concerning usability, as previously

discussed. These problem areas are improved by the work

provided in this report's models. Physical and logical

independence is "designed-into" the system and provides a

flexible schema (data base model) design.

Air Force Institute of Technology (AFIT)

Implementation Pla'ns

The Department of Defense and the Air Force are

very active in implementation requirements in the field of

microelectronics, Design Automation (DA), military design

for the following reasons. All major weapon and support

systems are very dependent on microelectronics; the special
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needs of these systems must be recognized and designed into

military microelectronics; and the expertise required for

* these tasks must be resident within the DOD and the AF

(3; 16).

The Air Force Institute of Technology (AFIT) is a

logical place to both introduce the military officer to

microelectronic capabilities and design, and to prepare the

officer for the design and implementation of microelec-

tronics. A plan has been outlined at AFIT to conduct

research into DA and to support the operational design needs

within the Institute (30:1-2). The proposed DA capabilities

needed at AFIT will attempt to:

1. Perform research in selected topics in design
automation,

2. Develop an environment to support design automa-
tion research at AFIT, and

3. Develop a capability to assist digital system
design and fabrication in-house at AFIT [30:4].

AFIT's future DA System design plans provide an

excellent opportunity to design both the DA System and its

IDDB. This project will provide numerous opportunities in

research. These opportunities include the potential for
.4

designing and implementing the different levels of a DA

system, data bases, application programs, algorithm develop-

ment, artificial intelligence research, and other related

areas of microelectronic design, development, and analysis.

Probably the most important aspect of this development

project is that the fruits of the labor can and will be
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used to upgrade commercial, DOD, and educational facili-

ties.

Many DA Systems have been developed from an exist-

ing design. This is because business considerations

usually require that the system can partially be imple-

mented at the beginning of the design. The design and

implementation of a completely new DA System requires a

lot of time and resources. The DA System being designed

and developed at AFIT will be a completely new system.

This report is a component of the overall AFIT DA System

plan. The results of this report will provide a model of

the DA System that is physically and logically independent

of hardware and software concerns, with the designed-in

flexibility to allow for the growth and changes that are

characteristic of design systems.

2
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CHAPTER III

DESIGN OVERVIEW

Techniques Used

Introduction

There are five major software engineering and data

base design techniques that are used for the design require-

ments of this report. These techniques help to design and

describe the IDDB, from the internal data requirements to

the data activity in the DA System. The techniques used

are:

1. Design Task Data Diagrams,

2. Design Cycle Activity Diagrams,

3. Third Normal Form,

4. Canonical Data Structures, and

5. Structured Walkthroughs.

The following sections of this chapter describe

each technique. Thu final section discusses how these five

techniques are used together to describe the design of the

DA System and the IDDB models. The diagrams used, Design

Task Data Diagrams and Design Cycle Activity Diagrams, are

used similarly as the Pta/Activity Diagrams are used by

SofTech. Hpwever, in this report, the functions are

reversed to stress the usage of the diagram. Thus, the

data diagram is used to identify the data requirements
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of a design task; and the activity diagram is used to

describe the activities of the design tasks.

Design Task Data Diagrams

Design Task Data Diagrams consist of the function

of the design task that the diagram is representing, the

input data used, and the output data generated by the

design task. The input consists of a task's actual input

data and its control data. The input data is categorized

and described by two generic terms: Input Design Data and

Control Data. The outputs generated by the design task

are:

1. Output Design Data,

2. Warning and Error Diagnostics, and

3. Execution Summary.

Figure 1 shows the input data on the left, control data

above, output data on the right, and in the middle box the

task being represented. The Data Diagrams show the spe-

cific and generic I/O data requirements for a design task,

and these are expressed in two levels. These two levels

can be seen in Figure 1. The first level contains only

generic data descriptions, and the second shows the speci-

fic data descriptions. Only selected examples of the

specific I/O data requirements of a design task are shown

in the lower level Data Diagram. The specific data

requirements are grouped into categories, the resultant
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RELATIONS (GENERIC CONTROL DATA)

RELATIONS (GENERIC TASK JRELATIONS (GENERIC

INPUT DATA) OUTPUT DATA)

SPECIFIC CONTROL DATA J

SPECIFIC INPUTTS SPECIFIC OUTPUT
DATA DATA-RESULTS

Wr Figure 1. Examples of Design Task Data Diagrams

generic I/O data requirements are seen in this upper level

of Design Task Data Diagrams.

Design Task Data Diagrams are also useful in under-

standing the conceptual schema. The conceptual schema is

made up of relation schemes, and the GENERIC data that each

relation scheme contains is denoted by the relation scheme's

name. The conceptual schema defines and views the system's

data organization at a high level. The SPECIFIC I/O DATA

REQUIREMENTS, in the Data Diagrams, view the data at a low

level. Conceptually, these two levels (GENERIC and SPECIFIC)

define the relation scheme and the relation occurrences.

4 It is also no coincidence that the GENERIC I/O DATA
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REQUIREMENTS are also the names of the Relation Schemes

that specify the design task's specific I/O data require-

ments. The relationship of the Data Diagrams to the data

represented in the conceptual schema exists as a many-to-

one mapping. The specific data requirements of many design

tasks can be and are represented as a single occurrence of

several relation schemes in the conceptual schema. This

provides the mapping function (M:1), as illustrated in

Figure 1 and Figure 2. Figure 2 shows how the entire IDDB

is made up of the Specific I/O Data Requirements and that

these are contained in the Generic Data Requirements.

Integrated
Design
Data Base

DataFiur 2 . Da ta
I. Reqdirements Re qUirements

1/0. i/0

Figure 2. Data Hierarchy
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K .'Desicn Cycle Activity Diqj rams

Design Cycle Activity Diagrams are similar in

representation to Design Task Data Diagrams, except instead

of showing how the data is transformed by an activity

(design task), the Activity Diagram will show the flow of

the different activities and their effects on the design

dat-1. Input, control, and output activities %ill be repre-

sented as arrows to/from the (design) data box.

The purpose of the Activity Diagrams is to graph-

ically describe the changes that the design data goes through

as the design evolves. The activities are represented by

labeled arrows, and the box represents the effects that the

activities nave on the data. In cther words, the arrowed

activities transform the design data. Design tasks are

grouped and represented as design phases. Each phase con-

tains a set of design tasks that perform transactions on

the design data. The Activity Diagrams shown are high level.

Lower levels would be required for turther implementation.

Activity Diagrams are useful in showing trans-

actions on the design data by describing the design cycle.

The diagrams show the data affected by design task activi-

ties. The Activity Diagrams will also show the point of

return in the design cycle, to begin redesign, after modi-

fications or corrections to the design have bee;n mac,.

Thus, in case of dresign errors the diagrams will show wh-tt
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data has been changed by a task, so the erroneous data can

be corrected.

Third Normal Form

This normalization technique prescribes ways to

find the best grouping of the data, which will minimize

the probability of future data base disruption. Without

discussing the theory behind it (see Reference 25 for a

complete discussion), the normalization process will be

described. The following three steps will process data

structures into Third Normal Form (-NF).

1. Decompose the data structures into two-

dimensional tables, which describe relations between items.

2. Reduce the tables, so there is full functional

dependence of the non-prime attributes on all the keys.

3. Eliminate +he transitive dependencies of the

non-prime attributes on all the keys.

The advantage of using 3NF is that the resulting

relation schemes are now in a normalized form (3NF), that

will resist common data integrity problems. These problems,

which occur as a result of bad data base design, will be

avoided through the use of 31F. These data integrity prob-

lems include deta base redundancy, potential inconsisten-

cies (update anomalies), and insertion and deletion

anomalies.
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Another advantage of this form is that it allows

a relation scheme to be decomposed and then joined, and the

resulting scheme will be lossless. Also, functional depen-

dencies of a relation scheme in 3NF are preserved after

decompositions. These two characteristics (lossless decom-

position and preservation of functional dependencies) are

important because they provide proof that manipulations on

the relation schemes will not lose information on data or

data relationships. These proofs are important to guarantee

integrity of the IDDB for each of the individual designers

and for the overall data base (25-28).

Canonical Data Structure

A canonical data structure is used to represent the

conceptual schema and the resulting representation is a

canonical schema. The canonical schema is a normalized

model of the I/O data requirements of the users (designers,

tasks, DA System) of the design data. The importance of

the normalization aspects of this model cannot be ignored.

The normalization is obtained by requiring that all rela-

tions in the canonical schema be in Third Normal Form. This

Third Normal Form normalization of the model precludes the

possibility of the anomalies previously listed. This model

of the data, canonical schema, represents the inherent

structure of that data and also satisfies (by definition)

the logical and physical independence goal of this thesis.
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Canonical Schema. The particular format used to

express the conceptual schema in this report is called a

canonical data structure, and the result is a canonical

schema. Usage of the terms, conceptual schema and canoni-

cal schema, will be consolidated into canonical schema.

This is because a conceptual schema is a general represen-

tation of a canonical schema. The canonical schema will

be used as a data organization and management reference

tool to help in the~implementation and maintenance of the

data base. It will be designed and built using the

canonical data structure technique which will be described

next.

The following paragraphs describe developing, read-

Ming the graphics of, putting into perspective, and, finally,

understanding, the canonical schema.

Development of the Canonical Schema. The next eight

steps describe how to develop a canonical schema, which

includes the 3NF normalization process (paraphrased from

Reference 25:248-289).

1. Define a single task's view of the data,

graphically showing the type of association (1 or M). The

"task-views" in this case are the design task's view of

the data.

No hidden transitive dependencies.

No redundant prime attributes.

(This essentially defines the Third Normal Form).
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2. Define the next design task's view of the data,

as above. Merge it into Step l's result. Remove any

synonyms and homonyms.

3. Denote the primary keys.

4. Add the inverse association between any keys.

If an M:M association is created, remove it either by

adding a concatenated key, or by dissolving one side of

the association, if it will not occur.

5. Remove genuinely redundant associations.

6. Repeat steps 2 to 6 until all task views are

merged.

7. Resolve isolated attributes and intersecting

attributes.

8. Plan for future growth of the data base.

Check if other relationships should be added, to prepare

for future growth (new task-views). Remember, the canoni-

cal schema will easily accept data base growth, if properly

planned for, so new tasks need not affect or, more impor-

tantly, invalidate the data base or the DA System design.

9. The canonical schema will be accurate so verify

that all task views exist and are still in 3NF.

Definitions. The following terms define the symbols
a

represented in Figure 3.

A Non-Prima Attribute is a data item or a piece of

descriptive data. Non-Prime Attributes will be pointed at
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Arrows: single arrow, unique directional mapping (1).

double arrow, multiple, directed, mapping (M).

For example:

1:1 conventional marriage

1:M polygyny (1 husband-M wives)

M:l polyandry (I woman-M husbands)

M:N group marriage

Figure 3. Canonical Schema Diagram
Symbol Explanation

by only one single arrow, its "owner," and Non-Prime Attri-

butes will point at no other attributes.

A Prime Attribute is an attribute which is a member

of a kc-, and cannot uniquely identify data (tuple). Prime

attributes will be pointed at by single arrows, and will

point with a double arrow. They can usually identify many

occurrences of a data item, rather than usique occurrences.

The prime attribute(s) constitutes a key and uniquely

specifies data.

A key has two properties: unique identification and

nonredundancy. The value of the key uniquely identifies

the tuple. No attribute of the key can be discarded without
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destroying the property of unique identification. Also,

keys can uniquely identify their "owned" data attributes

(details or assignments) and their prime attributes.

A Relation Scheme can represent an Association or

"Details," which describe a relation or an occurrence. An

"associative" relation scheme is made up only of prime

attributes (called an association). A relation scheme that

is made up of the key and its associated data attributes

specifies a relation's Details. An example of an associa-

tion in this report is the Signal-Pin Assignment, where

each signal is associated with the pin of an electrical

component. An example of a Detail would be the descriptive

data for each component's pin, such as location on a board,

pin function, impedence, etc.

It should be noted that a key that is subsequently

used as a prime attribute will be shown graphically as a

key function. An example of this occurrence would be when

a Model is specified (i.e., Model Details), and then the

data concerning the model's pins is required. The Model

specification, which contained a key, is now a prime attri-

bute (other prime attributes required for the key) because

more information is needed to specify the Pin Details.

Puttinq the Canonical Schema Into Perspec tive. For

future design and implementation of the IDDB, the next step

would be to create the logical schemas and the physical

schema of the data base.
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Logical schemas are made up of the simple, task-

specific, data associations that describe how the DA System

users view their data requirements (task-views). Logical

schemas are logically dependent on the AP. The specific

data is input data, control information, and output data,

along with the specific data formats required. Any informa-

tion required for a specific AP (task view) must be pro-

vided in the logical schema.

The physical schema defines the physical location

and characteristics of the data. It must take into account

the access methods, read and write procedures, data formats,

and other implementation considerations. The DBMS must be

chosen and implemented before the physical schema is imple-

mented.

Understandinq the Canonical Schema. Each relation

scheme must first be analyzed, and as the individual com-

ponents of the design become familiar, then the entire

design will be easier to comprehend. The associations that

are used to describe the tasks' views are an invaluable

aid in understanding the canonical schema. One task-view

after another should be analyzed, to gradually become

familiar with the data organization in the canonical schema.a
Once the design task's I/O data requirements (task-view)

are understood (from the Design Task Data Diagrams) then

the design phases (from the Design Cycle Activity Diagram)
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* should be analyzed. This will put the broader design objec-

tives and data requirements into perspective. The Rela-

tion Schemes should also aid in describing both the data

requirements and the data organization.

Some of the task-views in the DA System are repre-

sented in the Design Task Data Diagrams of Appendix A.

The data requirements of several tasks are shown in these

diagrams. These data requirements, as listed in the Data

Diagrams, are defined via the Relation Schemes and the

Details Sections which describe the canonical schema. The

data items, which comprise the non-prime attributes may be

contained within a group of other related data items, which

will make up a section of data called Details.

'~7

Structured Walkthroughs

Structured Walkthroughs were used to verbally

describe various aspects of this report to an audience con-

sisting of potential users of its results. These presenta-

tions were used to ensure that the potential users under-

stood the thesis design, its interim results, and that the

design work being done was correct. It provided an inter-

active, dynamic forum for the design of the IDDB and the DA

System. As a result of these meetings, many changes were

made to the design.

I
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Technique Interactions

This section will describe how the five previous

software engineering and data base design techniques have

been used to design and verify the canonical schema. As

previously mentioned, the structured walkthroughs were used

to validate the design results. The Data Diagrams are

expressed at two data levels: specific and generic. The

I generic data names used in the Data Diagrams are also the

names of relational schemes used in the canonical schema

description. There are many occurrences of the tasks's

generic data (in the Data Diagram) which maps onto a single

relation scheme; this is a many-to-one mapping). Many

tasks may require the same generic data, which is specified

through one relation scheme. The canonical schema is a

complex structure, but is constructed of relation schemes

which are in 3NF. The Data Diagrams show how the data fits

into the canonical schema, making it understandable.

The Activity Diagrams show, at a high level, how

the data is affected by the different tasks in the design

cycle. These diagrams will become more important, and will

have to be done at a lower level, during further implementa-

tion of the design of the DA System and its IDDB.

Data Abstraction Hierarchy. Design projects

describe inherently complex systems, with a tremendous

variety of information. Because of this complexity, there
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is a need to conceptually and hierarchically organize the

design data, which makes up the IDDB, is required by the DA

System, and will be used in the design cycle. A Data

Abstraction Hierarchy, Figure 4, consists of the data that

is contained in the IDDB and which redundantly shows this

data at different levels of detail and in different forms

of representation (1:1259).

The Data Abstraction Hierarchy is shown in Figure 4.

It shows the IDDB decomposed. The diagram shows how the

data requirements of the Design Cycle, starting at the

bottom, are redundantly specified as Specific I/O Data

Requirements (Specific I/O D.R.) of the many APs that are

contained ir the Design Cycle. Each of the Specific I/O

Data Requirements is logically dependent on the APs. The

data of several APs may be the same and is grouped into

Generic Data Requirements (Generic D.R.). Thus several

specific I/O Data Requirements may be represented by a

single Generic Data Requirement. Figure 4 shows that data

abstraction occurs between the Generic and the Specific I/O

Data Requirements. It also shows that the entire data

requirements of the Design Cycle are contained in the IDDB.

* Design Approach

Introduction

The design approach taken during this report is

composed of f--ir steps:
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Step 1--collect the user's design requirements;

Step 2--collect the total system requirements;

Step 3--build the canonical schema; and

Step 4--document the data organization, in terms

of the requirements for both the users' and the system's

views.

Step 1--Collect User's Design Requirements. This

first step of the design approach is made up of two sec-

tions: (1) identification of the task-views, and (2) charac-

terization of the data required for each task-view. A

questionnaire was used to gather the information required

to characterize the data. Many of the results of Step 1

are presented in Appendix A which contains the Design Task

Data Diagrams.

1. Identification of the Task Views. First, the

different design tasks to be used in the DA System must

be identified. (Later additional tasks may be added, but

an initial group of tasks must be used for the specifica-

tion requirements of the D/A System.) As soon as a task

has been identified, the Input/Output Data Requirements

(I/O DR) must be listed and defined. All of the task

requirements together define the data requirements of the

DA System.

2. Characterization of the Data Required for Each

Task-View. Generally, the questionnaire was used to
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identify the data required for the design of the LDDB and

the DA System. Specifically, the purpose of the question-

naire (see Appendix C) is to ascertain various facts about

the data items to be used in a task and the associations

that exist among the data items. The data item's name,

definition, attributes, known dependencies, and unique

identifiers are helpful in characterization. Associations

between two data items require an association name, the

data items involved, the mapping property (1:1, 1:M, or

M:M), the implication or meaning of the association, and a

list of any unused but meaningful associations. The final

results of an answered questionnaire will be a "task-view"

of each design task.

V17 The questionnaire was originally intended to be

answered by microelectronic designers; however, the tech-

nical level of the questionnaire required too much knowl-

edge of data base design. Also, the short time frame of

the thesis report prevented the questionnaire's use as

intended. Instead, the author used the questionnaire as a

guideline to follow in researching the many design tasks

that designers need to have performed.

Step 2--Collect System Requirements. This second

step in the design approach is made up of two sections:

(1) definition of the data base environment, and (2) charac-

terization of the interactions of the design tasks. This
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step satisfies the solution to the second goal, as

stated in Chapter I: Design the DA System, and use the

design as a model environment for the IDDB.

1. Definition of the Data Base Environment.

The data base environment, as defined in this paper, is

the DA System that will generate and use the data that is

in the IDDB. The approach taken in defining the environ-

ment is to break the DA System into its component parts,

describe each part, describe the interactions between the

parts of the DA System and, finally, show how the IDDB will

be organized and used in this environment. This definition

of the environment will be found in the DA System descrip-

tion.

2. Characterization of the Interactions of the

Design Tasks. To characterize the interactions of the

various design tasks to be used in a DA System requires

describing the precedence ordering of the different tasks,

including tasks that can be performed independently or con-

currently, the data changed per task, the restart point

for error recovery, and the control loops. Two levels of

this resultant characterization can be seen in the Design

Cycle Activity Diagrams.

The results of Step 2 are presented in Chapter IV.

The data base environment is described as in the DA System,

its organization and use. The interactions of the design

tasks are described in the Design Cycle Activity Diagrams.
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Step 3-- Build the Canonical Schema. This third

step in the design approach entails integrating and mini-

mizing the results of the previous two steps (Collection of

User and System Requirements). A canonical schema is pro-

duced from this effort. The canoni--al schema is a model

that represents the entire information content and organiza-

tion of the Integrated Design Data Base. As previously

stated, the design of a canonical schema implies that there

will also be logical schemas (made up of each design task's

view, specific data requirements), and a physical schema

(the physical implementation design of the data base).

Chapter V describes the design process and the resultant

model of the IDDB.

Stop 4--Document the Data Organization. The data

organization must be documented for both the task and the

system in terms of the canonical schema requirements. Some

of the task-views are described in the Data Diagrams in

Chapter IV. The specific input and output data require-

ments of these views are mapped into generic data categories

and then respecified into relational terms as seen in

definitions of the Relation Schemes and the Detail descrip-

tions of Chapter V. The data base environment is described

in the DA System sections, Chapter IV, and the interactions

of the design tasks are found in the Design Cycle Activity

Diagrams of Chapter IV. Finally, the canonical schema is

completely documented in Chapter V.
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CHAPTER IV

DESIGN OF THE DA SYSTEM MODEL

Introduction

This chapter is divided into three sections. The

first section discusses the general assumptions concerning

the DA System, the second discusses the organization of

the DA System (which contains the IDDB), and the third

discusses how the DA System will be used. The individual

and grouped assumptions that follow should help clarify

concepts affecting the DA System design. (Note: the DA

System is represented in Figure 5 and the reader will find

it a useful reference during its discussion.)

General Assumptions

Definition of Terms

While reading this thesis, there may be some con-

fusion as a result of term usage. It has not been possible

74 in this report to use normal terms from only one area of

study because the report's subject is interdisciplinary.

The author has attempted to make the meanings of words

4i clear and to use words consistently in the generally

accepted sense of their meaning. To help, a Glossary of

Terms (Appendix B) has been provided. It is suggested that

4
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the glossary be skimmed to verify and recognize the dif-

ferent definitions before reading on.

Design Model Representation. A design may be imple-

mented using many technologies and models. Physical imple-

mentation of the design may be postponed for quite awhile

during the design cycle, because specific technology desig-

nation may not be immediately required during the logical

design tasks.

Project ID. Each design project is assigned an

identification number, ID#, which uniquely identifies a

particular design effort. If the effort is broken into

teams, then a multi-value identifier may be used. The

identifiers used may be: Team # and Designer . This will

prevent data integrity problems such as when several

designers working on the same design are independently

designing the same segment of the design. The important

point is that the identifiers can be lumped under one iden-

tifier key: ID#.

Project Independent and Project Dependent Data.

Any data items that can be assessed without an ID# as a

part of its key is Project Independent (PI) data. Project

Independent data is data that is used for references by the

designer and is not changed by design work. PI data values

are independent of any particular or individual project.
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PI data is used for reference only, and values of each PI

data item can only be changed by the DBA, not the user.

Project Dependent data is data that is generated

specifically for a particular design and is changed by

design work. Any data items that must be accessed with an

ID# in the key is Project Dependent (PD) data. PD data

values are dependent on a particular, individual project.

PD data can be dynamically changed during design tasks.

The designer can change an incorrect part of the design or

the AP can change the PD data during the design task. All

data items are either PI or PD data. Once classified as

either PI or PD, this classification is fixed, although the

DBA can make PD data into PI data stored data.

'F" The design tasks in this report, the APs and their

associated data requirements, are not defined or described

exhaustively. However, these design tasks and data require-

ments are representative of the techniques and design data

that designers are using to design microelectronic systems

today.

DA System Organization

A conceptual view of the DA System's organization

shows the three separate data areas of the IDDB which

consist of:

1. Project Independent (reference data),

2. Project Dependent (designer's design data), and
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3. Execution (task Data).

The DA System which contains and uses the IDDB is also

- made up of:

4. A Data Dictionary,

5. An Executive,

6. Application Programs,

7. Application Program Interface,

8. A DBMS,

9. A DBMS Interface, and

10. The Users (called designers) of the DA System.

This DA System organization can be seen in Figure 5, and

will be helpful for the following discussions. By defini-

* .tion, the data is an integral part of the DA System. The

following subsections discuss each of the above elements of

the DA System.

Data Areas of DA System Model

The IDDB permanently stores two logically different

data bases. These are stored as the Project Independent

(PI) and the Project Dependent (PD) data areas. Each

designer has his/her own PD data area. During actual design

work, using the DA System, a third data area is created,

which is the Execution data area. This is where the design

data required for a task, from both the PI and PD data

areas, is generated for use during a design task execution.

According to some authors, these three data areas could
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also be called "work files," where

portions of the main data base are extracted
to form work files, which can then be customized by a
set of applications to provide efficiency and to
eliminate data contention problems at the central data
files [7:94].

These three data areas are now described.

1. Project Independent (PI) Data Area. The PI

data area is made up of reference data. This is data that

the designer and the design tasks reference and use, but

cannot change. Examples of this are Model Details,

Defaults, and Macro Nets. The DBA controls the maintenance

of this data area.

2. Project Dependent (PD) Data Area. The PD

data area holds each designer's design data. This is data

that is defined/changed dynamically during design tasks or

interactively by the designer. Examples of this data are

the Design Net, Default Changes, Design Details, and

logical and physical designs. The designer controls the

maintenance of this data.

3. Execution Data Area. The Execution data area

4 is the scratch data area into which the PI and the PD data

are written at execution time for use by a specific task.

Each task views data as it is defined in the canonical

dschema; therefore, the data sources, PI and PD, are irrele-

vant. The data that will exist in this Execution data

area during task execution is the data specified by the

Input Data Requirements Relation (to be discussed),
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and any internal data created during the design task's

execution. After inspecting the resultant data, the

designer will have the option to save it in a PD data area

or delete it from the Execution data area.

Functional Components of

DA System Model

The following components of the DA System are the

"functioning" components and provide services to the

designers and the design data.

4. Data Dictionary (DD). The Data Dictionary

contains the definitions of all the data items, where they

are used, data types, etc. The DD also contains the

logical location of each data item. The logical location

essentially defines the DBMS query to generate the rela-

tion that a data item belongs to. The Data Dictionary is

an important DBA tool, also.

4. Executive (EXEC). The DA System's Executive

is the software interface that the designer interacts with.

The designer tells the EXEC what design task is to be exe-

cuted and the EXEC performs those tasks. Any pertinent

questions, data error checks, or other person-machine

interaction is coordinated by the EXEC. For example, when
I

a designer's design data is insufficient for a particular

task to execute, the EXEC is notified by that task and the

designer is requested to provide/correct the data. Note
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the design data contains the stored data (previously

defined or generated), and the input data (designer input

for this task). This is an important characteristic,

since the design data that was correctly generated by a

previous design task and verified by the designer is the

same design data used in the next design task.

The data is not stored redundantly in the differ-

ent data format required by the different AP, but rather

is stored in a single implementation of the canonical schema.

Also, the next design task used will need only small amounts

of additional data for its input and control data require-

ments.

The EXEC knows which APs make up the functional

requirements of a particular design task. The EXEC will

provide the designer access to the PD data area, which

allows the design data to be viewed or changed. The P1

data can also be reviewed, and the default values of a

design task should be checked by the designer through the

use of the EXEC.

The EXEC should manage the desiqn data thus

demanding less of the designer's time. These functions

will lessen the burden on the designer by providing a

* single, flexible, easy-to-learn interface to the DA System.

Thus, the EXEC will allow the designer more time to con-

centrate on the formidable tasks: to design better

microelectronics in less time.

55



i 4

6. Application Programs (AP). There are many

Applications Programs that make up design tasks that are

used by a DA System, and new ones are constantly being

replaced and added to the system. These APs are the

software packages that perform the calculations and

manipulations of the design data. For instance, an AP may

be a component placement program for gate array layout. An

AP may make up an entire design task, a part of a task, or

an AP may contain several tasks. An important point is that

each task is defined to be one task-view as far as the

logical schema is concerned. Thus, several APs, using

different data formats and data item names, may have to be

executed to perform one task.

qF. 7. Application Program Interface (API). Each AP

has an Application Program Interface which is made of a

subset of two Relation Schemes: Input Data Requirements

(input data required to run the AP) and Task Results (out-

put data from the AP). (These relation schemes are com-

pletely defined in Chapter V.) The APIs, which represent

the APs used to make up a task, provide the relation scheme

subsets that are to be JOINed, and the result is the com-

plete relation scheme. For example, the design task may

include placement and route functions. The Input Data

Requirements of both of the APs will be specified by the

APIs which will allow the needed data for the design task

4 to be generated for use by the APs.
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An API also stores the actual format of the data

required by both an AP and the Data Dictionary. As implied

by the previous discussion, the complete relation scheme

defines the upper-level description of the logical schema.

Thus, when the relation scheme subsets are joined, the

resulting complete relation scheme contains the logical

scheme. The Data Dictionary transforms the data provided

by the DBMS, and gives it to the AP, and when data is

generated that is to be stored by the DBMS, the Data

Dictionary transforms it and gives it to the DBMS (via the

DBMS Interface). This interface function should be

transparent to the designer.

8. Data Base Management System (DBMS). The DBMS

is the software that must handle all access to the IDDB.

This single interface to the IDDB provides for consistent

data operations, reduced data redundancy, shared data,

secure data, and enforced standards. There must also be

control mechanisms to protect users of the data from com-

promised data (data integrity).

9. DBMS Interface. The DBMS Interface receives

the logical locations of the data and transforms them into

DBMS queries. The DBMS Interface transfers the queries

and query results to the appropriate DA system component.

The frequently-used DBMS qaeries can be optimized, and this

would be the location of the query optimization routinu.
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10. Designers. In a DA System, the designer is

the most important component. It is the designer's exper-

tise that the design system must be capable also of incor-

porating into the design. It is the designer's time and

the amount of data manipulations to be performed that must

be minimized (24:286).

DA System Use

The description of the usage of the DA System will

be in two parts: the designer's point of view and the

internal interactions of the DA System's software.

Designer's Point of View

Basically, the designer will only interact with the

EXEC. When a designer first logs into the DA System an

initialization procedure is executed which identifies the

designer and the design tasks to be run. Any extra data

that must be provided by the designer will be prompted by

the EXEC. Questions concerning any design tasks, data

required by a task, and even questions concerning the

present design are all handled by the EXEC. The EXEC will

facilitate changes to the design data, and will coordinate

changes to program default values. In summary,

the designer will only interact with the EXEC and the EXEC

will remove or reduce many mundane design tasks.

The function of the EXEC and the resultant view of

the DA System that the designer sees provides a simple, but
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flexible interface for the designer. While the design of

the EXEC is original, similar concepts have been used in

other systems such as the Computer Aided Design and Design

Automation System (CADDAS) at the Advanced Technology

Laboratories, RCA Corp. Reportedly,

* *[they] designed a system which executes appli-
cation software through the use of control executives.
These executives automatically gather the appropriate
data, perform any necessary manipulations, and cause
the execution of the application program [24:2851.

Internal Interactions

These interactions are described in three phases:

(1) Execution Data Generation, or preprocessing; (2) Task

Execution, or processing; and (3) Task Completion, or

postprocessing. (Note: the numbers in parentheses will

indicate their location on the DA System diagram (Figure 5).)

1. Execution Data Generation. At the beginning

of a design session, when the designer requests the EXEC

to run a design task, the data required to run this task

must be gathered into the Execution data area. The EXEC

determines the series of actions to accomplish the

designer's request. The EXEC calls (2) the APIs that are

required to run the APs that make up a design task. The

partial Input Data Requirements (IDR), specified in the

APIs, for each AP are JOINed by the Data Dictionary (DD)

to form the full Input Data Requirements (IDR) Relation.

The IDR specifies all of the design data required by the
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task. (Further discussion on the IDR relation is given in

Chapter V.) The DD then specifies (4) he logical loca-

tions of the data to the DBMS Interface. The DBMS Inter-

face converts the relation's logical specification into

DBMS commands (relational queries) that will be submitted

to (5) and executed by the DBMS.

2. Task Execution. Before task execution is begun

there are default parameters to be verified and approved

or changed by the designer. The EXEC coordinates (17)

the default specifications of each task. The designer is

provided (18) with the task Defaults for inspection, so

that any changes (Default Changes) can then be inter-

actively made. The Defaults to be "Changed" are flagged

(7) during the interactive session because the Defaults

are PI data, and then the Default Changes are stored (6)

in the PD data area. These Default Changes cause changes

(8) to be made in the Execution data area also. Any design

data (9) that has not yet been provided by the designer,

for use by the task, will be requested (18) from the

designer by the EXEC and will be added to the designer's

design data. Once all the design data has been completely

loaded and verified, (9, 10, 11) task execution can begin.

3. Task Completion. During the task execution,

Task Results data is generated. When the task execution

is complete the new design data must be evaluated. This

data, called Task Results, will be placed in the PD data
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area, but only after the results have been checked and

approved by the designer.

Often the resultant data (11) (Task Results),

will be error messages and execution diagnostics. The

designer will need to reference them to help correct the

design data. While these messages may not be important

design data, they may be critical to evaluation, redesign,

or data correction activity required by the designer.

Once the corrections have been made to the design data the

error messages can be discarded or saved.

For the resultant data to be saved the designer

must approve the Task Results data for storage. When

approved for storage the API will notify (3) the DD, which

in turn will provide (4) the logical storage location for

the data to the DBMS Interface. The DBMS Interface issues

the retrieval (5) (from the Execution data area), and the

storage (to the PD data area), commands (8) to the DBMS.

The DBMS then proceeds to execute the commands to complete

the storage operation.

DA System Model

The following is a more detailed description of the

DA System functions at each critical point (numbered

arrows in Figure 5) in the DA System.

1. The designer provides inputs, commands, ques-

tions, and responses to the DA System, via the EXEC.
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2. The EXEC selects the APs to execute, which

together constitute a design task. This is also where the

EXEC responds with the additional data from the designer

required by an AP to execute or with the disposition com-

mands concerning the Task Result data.

3. The partial IDRs Relations are joined in the DD

to specify the full data requirements of the design task.

The IDRs request information fromtheDD that is needed by

the APs to execute.

4. The DBMS Interface receives the logical loca-

tion from the DD of the data needed (to read or write) and

converts it into the DBMS commands required to process the

data.

W5. The DBMS receives the commands from the DBMS

Interface and executes the commands against :he PD, the PI,

ard the Execution data areas.

6, 7, 8. These are read and write commands that

the DBMS executes against the three data areas.

9, 10, 11. The results of the previous DBMS

commands are generated by DBMS command executions. A

result can be a successful read (thereby transmitting the

data), a write (changing or adding data), or an unsuccess-

ful read. In the case of an unsuccessful read the EXEC

is notified (12), (13), then (20). The EXEC determines

what data must be added to correct the situation. This

decision is the result of a query against the APIs to
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find the needed data. If additional PI data is needed,

the DBA must be notified. That would mean that the

required system data is missing. If additional data is

needed for the PD data area, the designer is requested

(18) to provide the appropriate design data.

12. This is the receiving side of the pipeline

that exists between the DMBS and the DBMS Interface. All

the information that is requested by the DBMS commands

(5) is funneled back through the DBMS Interface (12).

14, 20. The requested data is passed to the DA

System component that originally requested it (14 or 20).

If the data is to be used by the APs, it will be passed to

the APIs by the DD and then passed to each respective API

(14). Each API will in turn provide the needed information

to its associated AP (15). If the information was

requested by the EXEC (see #19), then it will be sent to

the EXEC (20).

16. As a task executes, the resultant data,

Task Results, will be transferred (16, 3, 4, 5) to the

Execution area (8) as the data is generated. (This may not

be efficient, but it has no detrimental effects on the DA

System as a data base environment.)

17. The EXEC is notified when the proper data is

not available for a design task execution. The EXEC is

also queried as to the disposition of the Task Results

after a tdSk's execution.
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- -. 18. The designer receives the queries and respon-

ses from the EXEC.

19. There are circumstances in which the EXEC

must query the data base. These include times the

designer wants to see parts of the design data, PD or PI

data area. The designer may also wish to change parts of

the PD data when Default Changes are made to the PD design

data.

Design Cycle

Introduction

The Design Cycle presented here uses general terms,

called generic descriptions, to describe the different

design tasks. The Design Cycle or Design Cycle Act.ivity

Diagram, presentation also represents the transformation of

the design data during the Design Cycle. These design

tasks in the Design Cycle are grouped into six phases

which make up the design cycle:

1. Input Design Specification,

2. Logic Design,

3. Logic Design Verification,

4. Physical Design,

5. Physical design Verification, and

6. Final Artwork and Documentation.
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Design Cycle Phases

The following descriptions will discuss these six

phases as they are represented in Figure 6.

1. Input Design Specification Phase. This phase

includes both logical and physical designs. Initially,

* the design is logical in nature. The design will gradu-

ally evolve into a physical representation during the

course of the design cycle. The techniques used to

specify these design representations are varied. They can

vary from graphical (using interactive graphics systems),

logic design languages, hardware description languages,

stick diagrams, block diagrams, functional specifications,

register transfer languages, and behavioral specifications.

Design languages, in general, are either structural (define

logic elements and their interconnections), or behavioral

(define how each element functions logically and timewise).

Usually the physical design specifications use the

verified !ogical design and transform the logical design

into the physical design. But before the physical trans-

formation is done, the logic design must be verified.

Also, because the logical design is general or non-

specified, it can be physically implemented using many

technologies and electronic "parts," ("silicon," DIP com-

ponents, hybrid circuits).

2. Logic Design Phase. Once the initial logic

design has been specified, the Logic Design Phase consists
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of the analysis performed by the designer on the results

of the Logic Design Verification Phase. There is a cycle

between the two phases that continues until the logical

design is verified. The Logical Design Phase is performed

by analyzing the results of the Logical Design Verifica-

tion Phase. The cycle among the two Phases entails itera-

tions of simulations and other analyses, which make up the

Verification Phase. Then the designer analyzes the results

of the verification tasks, changes the design; this is the

Logical Design Phase. Then the Logical Design Verifica-

tion Phase can begin another cycle.

3. Logical Design Verification Phase. This phase

includes Logic and Fault Simulations, Controllability/

Observability (CIO) tests, and Timing Verification tests.

Logic design verification allows the designer to verify

that the computer representation of the design will

logically function precisely as envisioned by the designer.

These different verification tasks exercise the design,

attempting to find certain design problem areas such as

signal faults, timing errors, and internal C/O weaknesses.

4. Physical Design Phase. This phase includes

those tasks that transform the present design into a

physical implementation of the logical design. Often

these design tasks are iterated with the next Phase,

Physical Design Verification. This iteration within the

design cycle allows the physical design problem areas to
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be flagged before the design goes too far. The design may

also be segmented, and then designed and verified in sec-

tions.

Because a logical design can be physically imple-

mented using different technologies, approaches (IC, PCB,

Gate Array, etc.), design rules, and geometries, it is

important for a designer to be able to explore the effects

of many implementations of the design. Thus, the designer's

goals for the design can critically affect the course of

this Phase of the Design Cycle. For instance, optimizing

for hardware or software speed, physical size, reliability,

maintainability, cost, testability, or a combination of

several of these factors, affects the design cycle and the

results of the design tasks. These factors also influence

the actual design tasks to be used within the design cycle.

5. Physical Design Verification Phase. This phase

includes tasks such as design rule checks, electrical rule

checks, and specification rule checks. As previously noted,

these tasks often interact in a cyclic manner with the

Physical Design Phase. This phase can be used to par-

tially or completely verify the physical design early in

the Design Cycle. The rule checks entail physical geo-

metric checks, electrical constraint tests, and verifica-

tion on the logical and physical designs' equivalence.

A. R. Newton (12:1189), provides support for these

phases when he discusses different techniques used for
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verification. These techniques are factored further into

functional and physical aspects of the design cycle. The

logical symmetry of the design cycle provides the symmetry

seen in this upper level Design Cycle Activity Diagram.

It should be noted that the tasks within the

Design Cycle define a structure of data dependencies.

These data dependencies exist as a result of precedence

ordering among the design tasks that generate or change the

data. To ensure data consistency and design integrity,

these data dependencies must be kept valid. Some design

systems only allow a fixed design cycle, with the depen-

dencies defined only in the forward direction which pre-

vents data dependency problems. However, designers find

this restrictive. A design system with a fixed or a "dis-

ciplined design methodology" is described in Reference 5.

This system achieved all its design goals. However, the

designers were not consulted concerning the fixed design

process, and consequently rejected the system (5).

The DA System model designed in this report allows

iterative loops, which are at the designer's discretion.

Design Cycle Activity Diagrams, at different levels, will

provide useful documentation showing affected data for

each design iteration.

6. Final Artwork and Documentation Phase. Once

the design has been completely satisfied, Phases 1-5
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completed, the artwork required to physically fabricate the

~design must be generated.

Extended Data Abstraction

Hierarchy

The Extended Data Abstraction Hierarchy (Figure 7)

shows the conceptual and logical models which present two

representations of the IDDB's data. This previously dis-

cussed data hierarchy shows the way that the different

APs, Tasks, Phases, and the Design Cycle view their data

requirements. Note that an AP requires several Specific

I/O Data Requirements to provide the data needed. Figure 7

also shows how descriptions of the models and their com-

ponents are related. These components include the Canonical

Schema (Figure 8), the Relation Schemes and their defini-

tions, prime and non-prime attributes, the two levels of

data requirements (Generic and Specific) of the Design

Task Data Diagrams, the Design Cycle Activity Diagrams and

its six Phases. The canonical schema and the IDDB are

pictured as parallel representations with the dashed line

4i between the two signifying the shared names of the Generic

Data Requirements and the Relation Schemes. Figure 7 also

shows the relationship of the keys, relation details (non-

4prime attributes), and the definition of the relation

schemes.

7
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CHAPTER V

DESIGN OF THE CANONrCAL SCHEMA

Introduction

This chapter describes the design of the canonical

schema of the IDDB. The chapter is broken into three parts:

Assumptions, Elements of the Canonical Schema Design, and

Meaning of the Canonical Schema.

General Assumptions

The following section describes assumptions made

prior to the design of the Canonical Schema.

1. Data Item Types. Data items are categorized

into groups of "types." The data items are grouped by the

way of Application Programs (design tasks) use and data

items. Thus a data item may be used in several "type"

categories. For example, signals to be used in a design

would be a data item. Each Signal is named in the design

and has signal values. Depending on how the Signal is

used, will specify how the different Signals are grouped

into "Types." There may be several "types" of Signals:

a. Fault (signals to be faulted)

b. Sample (signals to be sampled and used in

a timing diagram)
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c. Undefined (signal values presently

undefined), and

d. Case Analysis (signals to be used in several

types of analyses).

This "Type" concept is expanded in the next set of assum-

tions.

2. Model Specification. During the physical

design phase, the technology and the models used for Cell

Pattern (CP), Component (COMP), Macro must be specified.

In other words, a logical design may be physically imple-

mented in many ways and, as such, additional data is

required to specify the physical implementation of a design.

A Model specification will require, as explained below, the

Element Type (COMP, CP, Macro), Model Type, and Technology.

There are many possible representations of a COMP,

CP, or a Macro. These different representations are classi-

fied as Model Types. Model Types are the different forms,

in a logical sense, that a COMP, CP, Macro can assume. For

example, a COMP #, 7400 (maybe a NAND gate package) may

have many representations (Model Types). These Model Types

may include a physical outline, an internal schematic,

internal physical descriptions, a C/O model, a Timing model,

a Cost/Reliability model, a teaL Dissipation model, or any

other model.

A COMP, CP, or Macro can also be implemented using

S.different technologies. This is the third and final prime
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attribute (the first two are Element Type and Model Type)

required to uniquely identify the model to be used. A

Model Type has a different representation for each Tech-

nology. Thus, a NAND gate COMP may be represented by ECL,

TTL, CMOS, or some other technology. While some Model

Types of different Technologies may be the same (such as

the COMP Outline of a package), proper data base design

techniques (3NF) demand that these (presently) identical

*models be kept separate.

3. COMP and Macro. No attempt will be made to

rigorously define the distinction between CPs and Macros.

The assumed definition states that Macros are made up of

CPs, and that, logically, Macros are high level while

CPs are low level.

The value ranges that COMP#, CP#, Macro# can assume

are mutually exclusive. A CP# uniquely specifies a CP, and

no COMP or Macro will have the same identifying number.

Relations #7, #8, #9 (Element to Macro, CP, COMP Assign-

ments, respectively, to be described later in this chapter),

may seem redundant because they are mutually exclusive.

However, it is important to keep their individual designa-

tions to aid the designer's and DBA's understanding of a

design specification.

4. Relation Schemes and Attributes. Relation

Schemes either (1) define an association among data

items (prime attributes), or (2) define a data item and
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its "Details" (non-prime attributes). The Details cate-

gory consists of the non-prime attributes that describe a

specific relation, and the descriptive data is only rele-

vant for a uniquely defined occurrence of a relation scheme

or a relation. For example, Details can include descrip-

tions of the following types of design information:

a. physical (# of pins, # of gates/pack,

design rules, pin type, X/Y offsets of pins, etc.);

b. electrical (power rating, resistance,

tolerance, load current of a signal pin, etc.);

c. logical (truth tables, boolean equations,

symbolic representation, etc.); and

d. control (issue #, vendor #, company part #,

approved project usage, etc.).

Relation Scheme Details consist of all the accumu-

lated information concerning a particular Relation. To

belabor the point, the Relation Scheme Details' definition

consists of a generic description. But, in actual usage,

when the key values have been specified for an occurrence

of a Relation, then the actual values of the uniquely

specified Relation will be generated. Examples of these

Details and their two levels (generic and specific) can be

seen in the Design Task Data Diagrams (Appendix A).

5. Generic Data. There is an important, inherent

characteristic that is defined in the canonical schema and

its different relation schemes. The data required by a task
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to perform a user's design activities can be generically

identified and defined. This means that, regardless of the

APs used to perform the design tasks, programs doing

smaller functions refer to the same (generic) data, but in

a different format. That is, different APs performing the

same design tasks need the same (generic) input data.

Different tasks use much of the same generic data,

* but the tasks will use different names and formats for this

design-specific data (specific data requirements). Examples

of the specific design data required for a task are pre-

sented later.

In fact, it may be surprising to the reader to see

the same generic data that is required for different design

tasks in a DA System. The generic data occurrences will be

described with the canonical schema and its relations

schemes. There will be a reduction in the designer's work-

load as a result of the generic data concept. This is

because data will not have to be redundantly provided to

the design tasks. Thus, typing errors that would normally

occur will be avoided.

This concept does not define data in specific terms,

such as where it is used, what is its value, its specific

*4 name, data type, or other AP format requirements. Data

items have many characteristics, but each individual All

expects to see only a subset of them. Generic data allows

*| -the data items to have many characteristics, and each AP
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will only see the characteristics that it expects to see.

Generic data is defined conceptually and data independent,

so it has no physical or logical dependencies. Thus, each

AP sees its data as it expects to see it. The generic

data must be mapped and transformed for each AP to provide

data independence. This mapping and transformation func-

tion (performed by the API) is trivial in comparison to

the required techniques of a non-integrated data base, and

is essential for data independence of the data base.

The concept of generic data is a fundamental

premise to this thesis. Constructive ways to organize and

use this organized data to help design the IDDB is pre-

sented later. The use of generic data in designing an

IDDB is important because the amount of data normally

required for the design cycle is enormous. This report

provides an organized view of design data which will facili-

tate the reduction of the designers' workload on the DA

Systum.

Canonical Schema

Figure 8 shows the canonical schema representing

the Integrated Design Data Base. It has been constructed

using canonical data structures as described earlier in

this report. This data organization model of the IDDB

contains a unique characteristic. The data items in this

.- canonical schema are generic in nature. This simplification
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characteristic provides the physical and the logical inde-

pendence required of the design and allows the structure to

represent complex relationships.

The design and organization of the canonical

schema is discussed here using relational terms and tech-

niques. A descu:iption of the canonical schema design

will entail the canonical schema, the relation schemes,

the information carried within the relation scheme's

attributes, and the prime attributes of these relation

schemes.

There are two ways that can be used to address the

canonical scheme which will minimize the complexity. The

first way is to understand the relation schemes, their

1%7 non-prime attributes (Details and Associations), and the

prime attributes of these relation schemes that are con-

tained in the canonical schema. The second way is to look

at the data required for the different design tasks, which

are seen as task-views of the IDDB. These are described

in the Design Task Data Diagrams. Referring to Extended

"4 Data Abstraction Hierarchy from the end of Chapter IV,

Figure 7 should help the reader visualize how the differ-

ent views, conceptual and logical, interact to provide a

4 coherent description of the DA System's data requirements.
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Understanding the Canonical
Schema

Prime Attributes. The following section defines

the various prime attributes that will be used to specify

the relation scheme keys.

1. ID#. A number that uniquely specifies a design

project. This value identifies, in part or in whole, any

data that is unique to a particular designer's design.

Thus any design input data that specifically applies to the

design will have this ID# concatenated with other keys.

Referenced data that may be used, but is not design speci-

fic, will not need an ID# to uniquely identify it.

2. Element#. Within a design, the Element number

is a unique number that specifie- .mach individual occur-

rence of a CP, COMP, or Macro. Thus, for each NAND gate

used, a unique Element# will represent all of the elements'

occurrences in the design.

3. Element Type. An element type identifies the

specific type of element use or category that the element

belongs to. Some of the categories include: circuit,

generator, and memory. Circuit elements make up the actual

design circuit. Generator elements are used in simulations

to generate input signals; they do not become part of the

actual design. Memory elements are a special case of ele-

ments that often require initialization prior to design

simulation.
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4. Node#. The node number uniquely specifies each

signal within the design. Even though several elements

may have the same signal (Node#) as an input each signal

is the result (output) of only one element. A node may be

represented in two ways: logically (signal) or physically

(interconnect-signal)

5. Signal Type. These are categories that differ-

ent signals belong to, but the signals contained in the

Signal Types are not mutually excluded. Some of the cate-

gories include Inputs or Outputs, Samples (signal used

in timing diagrams), Critical Path designations, Faults

(signals to be faulted), and Case Analysis (signals used

in timing analysis).

6. Clock. This defines the system time during

some analyses. It also provides clock assertions, skew,

and general time delays. The time delays are used to

calculate interconnect time delays, provide gate delays,

and many other time related data items.

7. COMP#. The COMP# (component) uniquely identi-

fies a component type that will be used to fabricate a PC

Board. This COMP will have one function, and it may be

used several times in the design.

8. CP#. The CP# is a unique number that identi-

fies a Cell Pattern for use on an integrated circuit. A

design may use several, one, or no occurrences of a Cell

Pattern for IC design. An example of a cell pattern would
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be a NAND gate. The NAND gate may be represented in

several ways, using different models and technoloqies.

9. Pin#. Each CP/COMP/Macro occurrence has pins

that are connected to signals. These pins are usually

labeled and these nonunique pin#s must be associated to a

CP4/COMP#/Macro# to acquire meaning and uniqueness.

10. Tech. Technology defines the particular tech-

nology that will be used during a design implementation.

Specification may occur late or early in the design cycle,

depending on design requirements. Examples may be CMOS,

CMOS/SOS, PMOS/GaAs, TTL, etc.

11. Model Type. Every CP/COMP/Macro has several

ways that it can be represented and used during the design

W -cycle. These include an outline or interior description,

a CIO model, a Timing model, a Cost model, a Circuit model,

a Thermal model, and even a model functionally represented

as software (Subroutine). This prime attribute must be

used in conjunction with a CP#/COMP#/Macro#, and a Tech to

Ln iqucly specify a model to use in the design.

4 12. Macro# . The Macro# is. a unique numbur that

identifies a specific upper level function. A Macru is

composed of CPs. The Macro is implemented using different

Technologies, it has different Model Types, and it also has

a Macro Net that definus the speciiic de.sign, interconnec-

tions, and internal and external itib. The Macro Net is

* described as a Macro Model Type. Because Macros are made.
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up of CPs, the Macro Model Types are named, for example,

C/o Macro versus C/O Model.

13. Interconnect Model Type. A model that repre-

sents an interconnect structure that is used to implement

the design signals used in the Physical Design Phase.

14. Tname. Task Name (Tname) specifies which

design task is to be used. Tnames represent task functions

in the design cycle, such as: logic simulation, fault

simulation and verification, circuit analysis, IC place,

route and artwork, PCB place, route, and artwork, C/O tests,

design rule checks, timing verification, pattern genera-

tion, and many others. Each Tname has its own set of

requirements for input data requirements, and task results

as defined by relations of the same names.

15. I/O. This prime attribute defines whether

input or output data requirements are needed when specify-

ing the data needed for a design task.

Relation Schemes and Non-Prime Attributes Defined.

The following subsections will describe the contents of

each relation scheme, its definition, and the non-prime

attribute definitions (Details and Association) that are

specified by the relation scheme. The relation scheme

specification (as seen in Figure 9) consists of the

relation scheme name and, within parentheses, the prime

and non-prime attributes. The prime attributes are &n
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"Relation Scheme Name (PRIME ATTRIBUTES..

Non-Prime Attributes..)

Relation Scheme: definition..

Non-Prime Attributes: definition.."

Figure 9. Format of a Relation Specification

capital letters, and the non-prime attributes are not.

Also the non-prime attributes are not on the same line as

the prime attributes. The descriptive attributes will

either be a group of Details or an Association of data

items. A definition will then follow of the relation

scheme and its attributes.

.. A relation scheme name is the same as a generic

data item used in the Design Data Diagrams. Thus, the

reader can easily relate the prime attributes and other

information contained in a relation scheme to the informa-

tion that a design task requires.

1. INPUT DATA REQUIREMENTS (TNAME, ID#, I/O,

Design Data Requirements (DDR),

Control Requirements (CR),

Default Changes (DC)).

Input Data Requirements:

This relation identifies the data required as

input to a design task. The data needed is in three

categories: DDR, CR, DC. These requirements are unique
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for each task. The data requirements are defined generi-

cally in terms of relations. However, these requirements

are expanded into specific data requirements as shown in

Appendix A.

Design Data Requirements (DDR):

These requirements define the design data, from

the designer and design tasks, that describe the actual

design for a specific design task. Examples of the design

data are: Element-CP Assignments, Design Net, ID Details,

Element Details, I-S Details, Signal Details, Signal Value

Details, Element I/O Signals, Element-Macro Assignments,

Signal-pins Assignments, and others that are more task

specific. The DDRs are different for each design task.

Control Requirements:

These requirements specify the control statements

needed to direct a design task to execute its design func-

tion. These statements control the design task's approach,

algorithms, functions to execute, default values, and

diagnostics and debug.

Default Changes:

The designer has the option to change the default

value of data items which are called Default Changes.
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2. TASK RESULTS (TNAME, ID#, OUTPUT,

Design Output Data (DOD),

Warning and Error Diagnostics,

Execution Summary).

Task Results:

This relation identifies the data that is produced

by a design task. The three main categories of results

are listed above as the attributes of the Details. These

Task Results Details are defined generically and examples

of the expanded forms are shown in the Data Diagrams

(Appendix A). The Task Results are unique for each

design task.

Design Output Data (DOD):

The design results of a task as directed by the

Control Requirements are defined as the Design Output Data.

These results are dependent on the task execution. For

example, the DOD from a design rule checker task, includes

Design Rule Violations, Net Capacitance, Values, Net Check

Warnings, Net List, and a Stray Matter List. While the

DOD from a Timing Verification task includes a Timing Check

for control signals, Set Up and Hold Time Error, Minimum

Pulse Width Check Results, I/O Signal Values, and the

Design Cycle Time.

"48
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Warning and Error Diagnostics:

These diagnostics occur if the control parameters

provided are incorrect or there are errors in the design

data that prevent execution of a design task. The diag-

nostics are used by the designer to correct the input data

(design or control) to the task to get a valid task exe-

cution.

Execution Summary:

Execution summaries are provided after a design

task executes. These summaries often include a reiteration

of the input data (design and control) provided to the

design task.

3. DESIGN DESCRIPTION JID#,

Design Description Details).

Design Description:

This relation specifies the Details describing a

particular design. It describes the specific design charac-

teristics that a designer or a design team has so far

4designed. Note that all design-related information uses

the prime attribute, ID#, as a key, which specifies its

designer.

Design Description Details:

These attributes describe the design as it pro-

gresses through the design cycle. Any relevant historical
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or descriptive data can be stored here. Some examples

include revision level of design, technology, designer(s),

tasks, algorithms, approaches, processes within tasks used,

default changes, design data (verified logical/physical

designs), etc.

I.

. 4. DESIGN NET (ID#, ELEMENT#, CP#/COMP#/MACRO#,

NODE#, SIGNAL TYPE, PIN4, TECH, MODEL TYPE).

Design Net:

This relation is often called the net list or the

connectivity list. It defines the connections among all

the elements (CP, COMP, and Macros) and pins. This net

defines an association of all the data items listed as

'* prime attributes. Therefore, there are no non-prime attri-

butes.

5. ELEMENT (ELEMENT#, ELEMENT TYPE, ID#,

Element Details).

Element:

This relation identifies the relationship of ele-

ment# and element type.

Element Details:

!| The characteristics of each element are described

by this relation scheme. The information is dynamically

updated during a design task execution or by the designer.

These Details can contain placement location, position in

88

.I



row, row assignment, CIO values, Timing values, or other

Spertinent data related to an element. Note that an element

can be a COMP, CP, or a Macro.

6. ELEMENT I/O SIGNALS (ELEMENT#, SIGNAL TYPE,

NODE#, ID#).

* Element I/O Signals:

This relation specifies the Signals (Node#), and

the Signal Type associated with each element. Usually an

element will have several input signals and one output

signal. However, the signal types can also be Faulted

Signals (stuck at 0/1), or others. There are only prime

attributes.

7. ELEMENT-MACRO ASSIGNMENTS (ELEMENT#, MACRO#,

ID#).

Element-Macro Assignments:

This relation specifies an association (1:1 map-

ping) of an Element and a macro. This association is

specified by the designer. There are only prime attri-

butes.

8. ELEMENT-CP ASSIGNMENTS (ELEMENT#, CP#, ID#).

Element-CP Assignments:
:4

This relation is a defined association (1:1 map-

ping) of an Element and a CP, as specified by the designer.

There are only prime attributes. Note that Relations 8
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and 9 are represented as only one relation in the canoni-

cal schema.

9. ELEMENT-COMP ASSIGNMENT (ELEMENT#, COMP#, ID#).

Element-COMP Assignment:

This relation is a defined association (1:1 map-

ping) of an Element and a COMP, as specified by the

designer. There are only prime attributes. Note that

Relations 8 and 9 are represented as one Relation in the

Canonical Schema.

10. MACRO (MACRO#, MODEL TYPE, TECH,

Macro Details).

Macro:

This relation uniquely defines a Macro as specified

by its three keys.

Macro Details:

Macro Details contain information describing the

permanent and default information for each Macro. This

includes Controllability/Observability (C/O) equations and

parameters, Timing Values, Time Delay Values, Subroutine

Code and Parameters, Design Rules, and the Macro Net.

Macro Detail descriptions can encompass Macros constructed

of C/O models, Timing models, Thermal models, Subcircuit

*lodels, CPs, COMPs, Cost models, etc. The following

examples show how the relation may occur in practice:
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C/O MACRO (C/O#, CIO, CMOS/SOS, details),

TIMING MACRO (TIMING#, TIMING VERIF., TTL, details),

SUBCIRCUIT MACRO (SUBCIRCUIT#, SUBCIRCUIT, PMOS,

details).

The details are not specified in the relation since they

- are the data that is generated by the specification.

11. MODEL (MODEL TYPE, CP#/COMP#, TECH,

Model Details).

Model:

This relation defines specific information on each

representation of a CP/COMP. This is directly parallel to

the Macro Relation as described above.

Model Details:

Each CP#/COMP# has several model representations.

Each pair of Model Type and Tech defines a different group

of CP/COMP Details. Some of these model's Details include:

outline and interior geometries, Design Rules, C/O models,

logic symbol, cell heights, engineering revision level,

connection logic, timing models, circuit models (source,

gate, drain, etc.), Cost model, Thermal models, etc.

The following are examples of model occurrences or

relations:

C/O MODEL (C/O, 7400, TTL, C/O details),

CIRCUIT MODEL (CIRCUIT, 25, GaAs, model equations,
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electrical characteristics, initial conditions),

CP OUTLINE DESCRIPTION (CP OUTLINE, 7954, ECL,

outline description, outline design rules).

12. PIN (PIN#, CP#/COMP#, TECH, MODEL TYPE,

Pin Details).

Pin:

This relation defines pins that are on CP and

COMPs. Each CP/COMP has several pins and each pin has cer-

tain characteristics that are defined in Pin Details. Note

that it takes four prime attributes to specify these

Details.

Pin Details:

Pin details include pin type (I/O), pin impedance,

node capacitance, and physical characteristics, such as

thermal flexing and pin size.

13. SIGNAL (SIGNAL TYPE, NODE#, ID#,

Signal details).

Signal:

This relation defines a signal used in a design

net.

Signal Details:

These describe a signal's characteristics, before

it is physically implementcd, used in the logical design

.nets.
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14. SIGNAL-PIN ASSIGNMENTS (NODE#, PIN#, CP#/

COMP#/MACRO#, ID#).

Signal-Pin Assignments:

This relation defines the association of CP, COMP,

and Macro's pins with their associated signals. This

association is specified by the designer. There are only

prime attributes.

15. SIGNAL VALUES (MODE#, SIGNAL TYPE, CLOCK, ID#,

Signal Value Details).

Signal Values:

This relation defines the value of a signal, at

a particular time. These values have many ways that they

can be calculated.

Signal Value Details:

The signal values and techniques to calculate them

are contained herein. Thus, these details contain the

values of each signal at specific clock time. Sometimes

these signal values are calculated according to combina-

4 tional logic tables (of which there can be several), to a

formula, of listed, as in the Fault Simulation case.

Stable assertions (when control or data signals are stable

4 and when they will change) are defined. Other values arc

also defined, such as Signal Skew, Values Width, Rise and

Fall Times, etc.
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16. INTERCONNECT (INTERCONNECT MODEL TYPE, TECH,

Interconnect Details).

Interconnect:

This relation relates an Interconnect Model type

with a Technology which specifies its details. Note that

there is a general interconnect description which is the

model that is to be used when implementing a signal. It

is not, however, the actual implemented signal.

Interconnect Details-

These Details include specific electrical charac-

teristics and design rules that exist for a specific tech-

nology of interconnection. Other details include spacing,

maximum line length, line width, number of bends allowed,

technology, signal crosstalk, and reflection values, and

other design rules to be used in the implementation.

17. INTERCONNECT-SIGNAL (INTERCONNECT MODEL TYPE,

NODE#, TECH, ID#,

Interconnect-Signal Details).

Interconnect-Signal:

This relation requires four prime attributes to

specify it. It defines the actual implemented interconnect

structures used to make a signal.
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Interconnect-Signal Details:

- - These details describe the specifics of the imple-

K. mented signal, such as signal coordinate route, electrical

characteristics, line length, time delay, etc.

18. CLOCK VALUES (CLOCK, ID#,

Clock Value Details).

Clock Values:

This relation defines the clock details which

describe the clock and time functions over time.

Clock Value Details:

These details contain clock-related information,

such as clock cycle time, basic time unit, minimum pulse

width, constraints, min/max propagation delay of a design,

set up and hold time constraints, gate delay, clock skew,

etc.

Meaning of the Canonical Schema

The many component parts of the canonical schema

have been explained: the Relation Schemes, their Attributes,

and the different levels of the data as represented in the

Design Task Data Diagrams and the Canonical Schema. These

components provide important information concerning the

data base, the data it will contain, and the relationships

among the data.

The Canonical Schema's purpose is to represent the

total view or the "map" of the data base. It is to be used
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as a reference tool to navigate through the data base. As

seen in the Data Diagrams, specific data is not found in

the canonical schema, only a high level representation of

the data.

This high-level view of the data base is absolutely

necessary for the next two steps for the design and imple-

mentation of the IDDB. The Canonical Schema fits between

the results of these two schemes and provides a common map

to which they can both refer. The physical and the logical

views of the data are diverse; this map facilitates and

guides the required design and implementation procedures.

In summary, the Canonical Schema is essential to

the successful design of a data base model, especially the

Integrated Design Data Base. It not only provides an excel-

lent map of the overall design and of the data, but is the

key solution to the critical goals of physical and logical

independence. Also, because of the normalization process

the Canonical Schema was designed with, the Canonical

Schema will avoid anomalies and will readily accept the

4 changes and growth of the data base over time.
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CHAPTER VI

CONCLUSIONS

This report has addressed the problem that is faced

*i by microelectronic designers when they find the computer

tools available to them for design work are difficult or

at least not easily used. The objective of the work that

*' has been described in this thesis report has been to

improve the usability of certain computer tools which,

in particular, are the DA System and its Integrated Design

Data Base. The overall goal of this thesis has been to

develop a conceptual-level model of a DA system including

an Integrated Design Data Base.

Six Goals Discussed

The overall goal was broken into six individual

goals. These six goals and how they were achieved in this

thesis report will constitute the remainder of this chapter.

1. Discuss the background of the problem and the

essential elements of the solution. This was done in

Chapters T (Introduction) and II (Background). In Chap-

4 ter I some important concepts such as data independence,

logical and physical independence, and logical, physical,

and conceptual schemas were discussed. Also, design con-

siderations and the purpose of the report were discussed.
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Finally, the six goals that are now being summarized were

introduced.

In Chapter II a background is provided for the

problem areas that this thesis report addressed and the

elements of the solution that would provide the potential

techniques and concepts essential for completion of the

thesis objective. The essential components, techniques,

and concepts of the solution are Software Engineering and

Data Base Design Techniques, DA Systems, and an Integrated

Design Data Base. Thus, the first goal of the thesis has

been satisfied.

2. The software engineering and data base design

techniques and design approach must be described. This

second goal's results were described in Chapter III (Design

Overview). The main techniques used were Design Task Data

Diagrams, Design Cycle Activity Diagrams, Third Normal

Form, Canonical Data Structures, and Structured Walk-

throughs. Each of these techniques was discussed and the

process required to perform each technique was described

4 where necessary. In achieving this second goal, the Design

Approach used to perform the design work was also described.

The Design Approach consisted of four steps that when com-

* pleted would satisfy all of the six goals of this thesis.

The four steps were to:

a. collect the user's design requirements;

4i b. collect the total system requirements;
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c. build the canonical schema; and

d. document the data organization, in terms

of requirements, for both the users' and the system's views.

As can be seen from Chapter III, the second goal has been

satisfied.

3. Present and characterize the important, known

design task data requirements of the DA System. The

results of this goal are the specifications of the require-

ments of the Design Cycle, design tasks, and the individual

data requirements of these design tasks. These requirement

specifications have been essential to the development por-

tion of this report. Some of the results can be seen in

* the Design Task Data Diagrams and the Design Cycle Activity

Diagrams. Therefore, the results of this work are the

foundations that the DA System and the Integrated Design

Data Base models have been built on. This is the area of

research that is logically and physically dependent on the

specific hardware and software that the design system is

to be constructed. Thus, when further design and implemen-

tation activities are initiated, this will be the place for

these requirements specification activities to begin.

4. Design the conceptual DA System model which

will be used as the model to describe the IDDB environment.

This was accomplished in Chapter IV (Design of the DA

System model). This goal not only entails a high-level
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design of the DA System, but also a description of how the

IDDB will be used within this system design. The descrip-

tion of the DA System contains a group of general assump-

tions about the system, the organization of the system, and

how the system will be used. The organization of the sys-

tem lists and describes the components that will be used

in constructing the system design. A discussion of the

designer's point of view during the use of the system is

provided along with a more detailed description of the

internal interactions of the DA System components as they

perform their required functions. A final discussion is

included concerning the Design Cycle. The main purpose of

this discussion is to show the interactions of the designer,

the design data, and the DA System during the long, complex

process of the Design Cycle. The discussion also shows how

certain characteristics of the DA System can be used to

satisfy the original objective that is being addressed by

these six goals: to increase the usability of the computer

tools available for ustc by the designer. The fourth goal

has been accmplished and has laid the groundwork for the

fifth cj-al.

5. Desiqn the conceptual-level model of the

4interated design data base (th,, canonical schema) which

is physically and lo ca_lqyindependent of hardware and

software considerations. This fifth goal's achievements

4 were described in Chapter V (Design of the Canonical Schema).
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II

This chapter describes the model, the Canonical Schema,

which represents all of the design data required by the

IDDB for use in the Design Cycle. The components of the

design are presented and discussed. These components are

represented in diagrams and in a relational data model

format. These relational representations include the rela-

tion schemes, prime attributes, non-prime attributes, and

des,.criptions of all these representations are provided.

After the elements of the Canonical Schema were discussed,

the meaning of the Canonical Schema was presented. These

Rdiscussions thoroughly presented the model of the IDDB and

described how the conceptual model can be used to map the

specific data requirements of these design tasks onto the

logical requirements of the IDDB. Because of the tech-

niques used during the design process of the Canonical

Schema, the results are physically and logically indepen-

dent of any hardware and software considerations. The

fifth goal has been accomplished as described in Chapter V.

6. Provide recommendations concerning the implemen-

tation and maintenance of the DA System and its IDDB. The

results of this goal were presented in the next chapter

(Recommendations). These recommendations included a data

model choice and the justification of the choice. It also

provided a discussion of the required characteristics of

the IDDB and the DBMS that will manage it. The next sec-

,tion discussed an implementation plan that provided a
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strategy of how to most effectively complete the design and

implementation of the models of the DA System and IDDB.

These "challenges" constitute the implementation plan and

are broken into segments that are the size (effort-wise)

of a class project or of a thesis. Finally, there is a

detailed discussion of the functions, activities, and tools

required of the Data Base Administrator. Thus, Chapter VII

provides a complete discussion that satisfies all of the

requirements of the sixth and final goal. Therefore, with

the completion of this chapter, the objective and the

overall goal of the thesis have been met and have been docu-

mented in this report for future use and constructive dis-

cussions.

Final Concluding Remarks

There are three reported accomplishments achieved

in this thesis report. The first two accomplishments are

the models that were developed: the DA System and the

Inegrated Design Data Base. While the author knows of no

flaws in the models presented, he does not totally reject
'4

that possibility, since it is an untested model. At the

worst, the models can be used to stimulate interesting dis-

cussions and debates. However, the author does feel that

these models do efficiently and effectively describe a

useful contribution for designers of microelectronics.
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The accomplishments of the two models are useful

to the DA field in general, but the third accomplishment

is relevant specifically to organizations, such as the

Air Force Institute of Technology, who will implement the

models. Thus, the third accomplishment is .ae implementa-

tion plan provided in Chapter VII. If the steps are fol-

lowed and the functions of the components are built and

tested as designed and described, then the result should

be an efficient, flexible, and user-friendly DA System.

0-3
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CHAPTER VII

RECOMMENDAT IONS

Data Model Choice

The three major data models are the Relational,

Network, and Hierarchical data models. There are many

books written that describe these data models in great

detail; some of these are References 25 to 29. Several

factors were used when considering the data models and

their effects on the chosen data model for the implementa-

tion. The primary factors that were used were usage effec-

tiveness and implementation efficiency. As a result of

using these factors to choose a data model, the relational

data model was found to be superior and was chosen.

Usage Effectiveness

This factor measures the ease in expressing a

query to operate against the data base. This factor also

measures the (data) manipulative ease. The term "manipula-

tive ease" implies that there are a small number of oper-

ators and that there are high level operators available.

Thus, not only must the queries be easy to express, but

they must be accurate.
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Implementation Efficiency

This factor is used to consider implementation

difficulties and advantages concerning hardware and soft-

ware efficiency that is affected by a characteristic of

the data model. Storage space for the data structures and

computer time for processing queries are major factors that

dominate the implementation cost of a data base.

Justification of Choice

Disadvantages. The areas where the relational

model is weakest is in implementation efficiency. The rela-

tional data model does not presently perform well on large

data bases. However, the physical implementation of rela-

tions (tuples) is much less complex than tree and network

structures and access strategies. Therefore, it is slower

but less complex to design, implement, and maintain. Also,

the apparent inefficiencies mentioned above are being

eliminated through research. For example, JOINs should not

usually be physically performed, but instead should simply

provide a logical view of the results of the JOIN. There

are many techniques being developed and implemented that

improve the present inefficiencies of relational DBMS.

One category of techniques that has a lot of potential is

query optimization.

Many of the efficiency problems that do not occur

in the other data models, but do occur in the relational
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data model, have been previously solved in the other

models. Research in the relational model area is proving

that there is reason for optimism for a relational data

model implementation that is comparable to the other models

in efficiency.

Advantages. The relational data model has many

good points to consider when evaluating its advantages.

As far as user effectiveness, the relational data model

uses only one construct, the relation. The query languages,

used in relational data manipulations, are rich, high-

level, and easy to use. Thus, the relational data model

scores very high in user effectiveness.

_When representing the relational model in Third

Normal Form, there are many other advantages. Some of

these are listed below:

1. Ease of Use. Relational queries are very easy

to use for all levels of data base expcrtise.

2. Flexibility. Relational operators support

flexible data base operations.

3. Precision. "The precise results of relational

mathematics can be applied to the manipulation of rela-

tions [25:226]."

4. Security. "Security controls can be easily

implemented [25:226] ."
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.

5. Ease of Implementation. Tuples, or tables, are

easily implemented.

6. Data Independence. Data independence has

been previously discussed.

7. Data Manipulation Language (DML). Provides the

flexible specification language used for queries. Can De

based on relational algebra or relational calculus.

8. Clarity. The relational data model is easily

understood, mainly because of the simplicity of the data

structure and the mathematical logic of its DML (25:226).

An example of a query optimization technique is a

program that will perform a logical optimization on a query,

breaking the query into several smaller queries. The

result is efficient because huge parts of the tables that

would normally have to be constructed have been deleted by

proper query specifications. Frequently used queries

are usually the best choices for optimization. Another

example of an optimization technique is to physically store

frequently used relations so they are readily accessible.

This is often called data migration. As has been described

by these optimization techniques, there is a lot of poten-

tial for improved efficiency as a result of having queries

and data accessibility optimized.

Another advantage of the relational model is the

attention it is receiving from researchers. The cause

of the attention is for three main reasons. First,
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relational inefficiencies are less obvious in small and

medium sized data bases and most existing data bases range

in size from small to medium. Second, it has been dis-

covered that most of the inefficiencies of the relational

data model can be eliminated. The third reason is the most

important. The relational data model has a sound mathe-

matical basis that is rich in theoretical and applied

research topics. Improved optimization techniques and

other research into the potential of this mathematically

rigorous data model and its data manipulations all hold a

great deal of hope, interest, and progress for this area.

The functions and characteristics of the DA System,

using the IDDB, provides an excellent environment for a

relational data model implementation via a relational

DBMS. The inefficient part of the relational data model,

i.e., queries against a large data base, are minimized

because small to medium sized data bases are mainly used;

that is, Project Dependent and Execution data areas are

not large. These -,;maller data bases will contain the data

that is manipulated most by the DBMS and used by the

Application Programs. The most frequently used data access

paths (for this report's design) have been identified:

1 . reviewing the design data,

2. yenerating the PD and Execution data areas, and

3. storing new design data into the PD data area.
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The DA System's functions and characteristics are

ideally suited for the relational data model and especially

for optimizing techniques that can be implemented within the

system.

Also, the flexibility of relational queries will

be available for use with the small data bases in the PD

and the Execution data area. Generating the data in the

Execution data area requires data queries against a large

data base. These queries against the large (Project

Independent) data base are prime candidates for optimiza-

tion techniques. Thus, with careful planning and implemen-

tation of optimizing techniques, the DA System users can

enjoy the usability and flexibility advantages of the

W7 relational data model without being negatively affected by

its present inefficiencies.

A final selling point in the favor of the rela-

tional data model is that it naturally supports a High Level

Language (HLL) which is crucial for future engineering tool

developments. The relational model can support such a IHLL

'4 because it has a sound theoretical basis, presents a simple

interface (one data type), and has a natural language-like

navigational languaqe (versus record-at-a-time). The rela-

tional data model is important for future development of

engineering applications because it will allow interaction

between the data base, the artificLal intel] igence, and

the engineering community (36:866).
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Briefly, in summary, the relational aata model is

very effective to use, but the other two data models at

the present time are more efficiently implemented. The

many advantages of the relational data model and rela-

tional DBMS outweigh its minor inefficiencies. Finally,

the characteristics of the IDDB environment will favorably

use the relational data model to great advantage.

Characteristics of an Integrated

Data Base and Its DBMS

Objectives

The ultimate objective of an integrated data base

is to make application program development (i.e., I/O data

manipulation) and systems integration (with the data base

the kernel) easier, cheaper, faster, and more flexible.

The system must be usable; therefore, it should simplify

the designer's work. Reliability is an important considera-

tion also. The system should be available when it is needed

and should not fail while it is in use.

An integrated data base contains the data needed

for the system's data processing. That data should be

accurate, secure, maintained, and protected from misuse

and unauthorized change. The data organization should

help users with different applications which have differ-

ent data requirements. The overall data organization

should allow different APs and designers to have differ-

ent views of the same data. This is especially important
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for these two cases of changes: (1) when existing APs may

be changed to process the data differently, and (2) when

new APs will be integrated into the DA System which

require new views of the data. The costs to make these

changes should be minimized, and the changes should not

affect other logical views of the data or the physical

view of the data.

To achieve the above objectives the data base and

the DBMS must have certain characteristics. When these

characteristics are designed into the implementation of a

data base organization and DBMS, then its ultimate design

objective can be met. It is also important that the data

base and DBMS characteristics define a dynamic and flexible

war system that will absorb change and be able to be used

efficienLly and effectively.

Cha r acteristics

The organization of an integrated data base and the

functions of its DBMS should provide certain desirable char-

acteristics. These characteristics are briefly described.

1. Ability to represent the inherent structure

of the data and define abstract data types. The rela-

*tional data model and its DBMS implementation contain these

characteristics.

*
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2. Simplicity in describing the overall logical

structure of the data base. (A canonical schema is an

* ideal description.)

3. Integrity for data items and associations

between them must b? maintained. Data integrity should

be provided during storage of data, data updates, data

insertion, and system failures. Thus, integrity implies

that all calculations should be carried out properly and

produce correct results. If the relational DBMS is cor-

rectly designed, implemented, and tested, then all of

these characteristics will be satisfied.

4. Interface with the future. In the future the

data, its storage media, and its usage will change. It

is critically important to design the data base such that

these changes will not require changes to other data or to

the APs that use the data. Data independence is the key

in providing a physical and logical buffer against change.

Thus, physical and logical data independence will help pre-

clude the possibility of such drastic effects on the data

or APs. This characteristic (data independence) is the

most subtle error possible, during the design and implemen-

tation phases of the data base, but the most obvious after-

wards. The models described in this report are data inde-

pendent.

5. It is important to minimize redundant data

storage to help prevent anomalies that can occur with
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redundant data used in data manipulations. The relation

schemes contained in the Canonical Schema which are in

Third Normal Form and by definition are minimized and

normalized.

6. The system's performance should exhibit accept-

able efficiency in carrying out the desired computations

and provide reasonable response times which are appropriate

for the person-machine dialogue. Response time will usually

depend on the traffic volume, the data base physical organi-

zation, the query, and the hardware capabilities.

7. It is also important to minimize the cost of

operations through data migration and tuning the system to

the individual requirements of the system users. Trade-

Woffs exist to minimize the storage requirements, while

ma:-:imizing data accessibility. The DBMS must take data

migz-ation into account (difference in frequency of use of

data items) and, in response to data migration, tunability

of the system (adjust physical view or optimize queries),

when attempting to minimize the cost of data base opera-

tions.

8. Data security and privacy are important con-

siderations.

Data security refers to protection of data against
accidental or intentional disclosure to unauthorized
persons, or unauthorized modification of destruction.
Data privacy refers to the rights of individuals and
organizations to determine for themselves when, how,
and to what extent information about them is to be
transmitted to others [25:38].
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9. A powerful user language including a search capa-

bility, is needed. A powerful and flexible user language

will allow easy access to and manipulation of the data

base. This will be a great help in the development of the

EXEC, AP interfaces, and the DBMS Interface. The query

language is usually built into the DML of a relational

DBMS.

(Characteristics 1-9 are from Reference 25:34-47.)

10. The DBMS should provide an interface to an HOL

(Fortran, Pascal, AdA, etc.).

Ii. The DBMS should support multiple design

representations.

For the DA System being designed, the most important charac-

teristics of the data base's design are physical and logi-

cal independence. These characteristics will allow the

data base and the APs that use the data to evolve and

change without affecting the overall data base organiza-

tion or the APs in the DA System.

Implementation Plan

There are five "challenges" that exist to be

addressed and resolved to be able to implement the DA

System and its Integrated Design Data Base. These chal-

lenges are descii.bed in the following paragraphs.

1
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Challenge 1

Ifl First, several APs must be chosen that will be

" initially integrated into the DA System. It would be help-

ful and logical if these APs made up one of the six phases

of the design cycle previously discussed in Chapter IV.

Second, the task-views, or logical schemas, of the

chosen APs must be designed, which will include the input,

output, control data and data formats. These results will

be defined as relations and will be subsets of the Input

Data Requirement and the Task Result relation schemes

(which have been previously described in Chapter V).

Next, an AP Interface for each of the APs to be implemented

must be written. The API will contain the relation defini-

tions. The API must also contain handlers which "parse"

the control commands issued from the EXEC and the Data

Dictionary.

Challenqe 2

A Relational DBMS must be chosen and implemented

that satisfies the characteristic functions of a good DBMS,

previously listed. There should be effective tools for

the DBA to use (DDL and DML) to create, load, and change

the integrated design data base. The Project Independent4

(PI) data base must also be loaded with the minimum

required data required to run the chosen APs. After the

APs are chosen and the APIs are complete, then the Data
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Dictionary must be written. The DD contains the logical

location, definition, and organization of all the data in

the IDDB.

Challenge 3

The DBMS Interface must be developed which will

issue commands to the DBMS and pass responses back to the

Data Dictionary. It must be able to:

1. Receive relation specifications from the Data

Dictionary;

2. Convert these relations into acceptable DBMS

commands;

3. Issue commands that create, find, read, write,

test, and change the Project Dependent data area; and

4. Issue commands against the Execution data area

that find, create, read, write, and delete from Execution

data area.

In particular, the test operation queries the PI

and the PD data areas if required design data is available;

the read operation allows the new design data to be shown

to the designer; and the write operation allows the design

data to be written into the PD and the Execution data areas.

6Challenqe 4

The Ex-.ecutive must b! designed and implemented.

First, the design requirements of the EXEC should be spuci-

fied by the DBA prior to the EXEC design effort. These
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design requirements will describe the DA System capabili-

ties, present and near-future, that should be supported by

the EXEC.

The initial design should be modular and hardware

independent. The design implementation of the EXEC should

also be very modular. The exceptions of the hardware

independence requirement must be carefully modularized and

must be documented. The EXEC code written that is not

hardware dependent shall be written in a common stan-

dardized IIOL, so it can execute on other computer systems

that support a compiler in that language. Thus, the EXEC

will be able to run on different hardware with only the

hardware dependent modules having to be rewritten.

'7 Some of the functions to be implemented into the

EXEC should be:

1. The EXEC should be able to identify which APs

are to be run and who (i.e., designer ID#) will run them.

2. The EXEC should also be able to query the data

areas (i.e., PI, PD, and Execution) through use of the Data

.Dictionary, and allow the designer to verify the design

data and the default parameters of the design tasks.

3. The EXEC should permit the designer to be able

to save data generated by task executions and route it from

the Execution into the PD data area.

4. The EXEC should also permit the designer to

4 be able to delete data from the Execution area, change
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data in the PD area, and make Default Changes through the

use of the EXEC.

5. The EXEC must provide "automatic management of

precedence ordering" to control data dependencies (1:1254).

As previously discussed in Chapter IV, there must be some

way to implement the required control of the data depen-

dencies, as implied in the Design Cycle Data Diagrams.

One approach is supported by Charles Eastman who discusses

the use of transaction graphs which seem to have potential

to help monitor data dependencies (1:1254-1255). The

information contained in low-level Activity Diagrams can

be directly translated into the required transaction

graphs. Then the graph must be compiled into a form

W7 usable by the EXEC. Once these steps are done, the

resultant process will monitor and control the data depen-

dencies.

Challenge 5

The goal of this challenge is to provide a continu-

r ous update of the previous four challenge activities and

coordinate these changes so that the system is maintained.

Thus, this is a continuous challenge to design and imple-

°. ment the capability to manage the growth and modifications

of the DA System.
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* .. Summary of Challenges

Challenges 1, 2, and 3 can be performed simultane-

*'- ously if designed carefully and the results of each are

coordinated. The second challenge needs to receive the

subsets of the relations that define the Input Data Require-

ments and Task Results from the first challenge. So,

a modular, standardized interface must be defined between

the API and the Data Dictionary. Also, a modular, stan-

dardized interface must exist between all the DA System

*" components in Figure 5 at points:

Des igners/EXEC 1/18

EXEC/AP Interface 2/17

AP Interface/Data Dictionary 3/14

* Data Dictionary/DBMS Interface 4/13

DBMS Interface/DBMS 5/12

Data Dictionary/EXEC 19/20

The overall objective of the design and implementa-

tion of the DA System and its IDDB is to provide a flex-

ible, usable design tool for the designer to use, that will

allow growth and change of the components of the DA System.

Data Base Administrator (DBA)

The term DBA is being used loosely in the follow-

ing discussion. Instead of just managing the data and the

DBMS, the DBA functional description is also managing the

entire DA System. So the term used would more properly

*• "be a Systems Administrator, but DBA will still be used.
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DBA Qualifications

The DBA must be able to understand the problems of

the users of the system, the designers. The DBA must also

be able to evaluate, through software engineering tech-

niques, the efficiency and effectiveness of software

design and code that will become the DA System. The DBA

must be technically competent to understand the present

use and implementation of the DA System, and to plan for

future growth and changes to the System. The DBA must have

the authority to handle designer's and system problems.

This implies that the DBA must be able to obtain or allo-

cate data collection, programming, computing, and communi-

cation resources (26:596-698).

*It may be obvious to the reader that a DBA is

usually not one person, but is a team and the DBA is often

referred to as a DBA Function, thus allowing these qualifi-

cations to be spread among several people. The following

paragraphs will discuss the various functions and responsi-

bilities that make up the DBA Function.

The following two sections will describe the

typical DBA functions and then the DBA functions that are

required during the system design and implementation will

be separately discussed.

DBA Functions

The DBA maintains the overall structure of the

data. The DBA is the custodian of the data, but does not
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own the data. For this report, the DBA controls the PI

data and maintains the organization of the PD data. The

DBA must guide and plan the course that the data base will

take in the future. Therefore, the DBA must have a com-

plete understanding of the data base, its organization,

its economics, its design criteria, its change and growth

patterns, and the needs and requirements of the designers

and the design tasks that use the data.

Figure 10 shows the DBA location within the DA

System's environment. The users are the designers using

the DA System. The Programming, Computational, and

Communication facilities are some of the resources that

the DBA function manages. The DA System is not shown, but

the IDDB component is represented as the "Database Content."

The "Management of the Enterprise" for this report repre-

sents the needs of the AFIT educational and research com-

munity (26:596).

Responsibilities. The DBA's responsibilities

include generating the information content, the storage

structure, and access strategy of the data base. The

required information content has been defined at the

conceptual-level by this report. The DBA must decide, by

choosing APs which will be integrated into the DA System,

the final design data to be integrated into the IDDB.

The storage structure and access strategy have already
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Figure 10. "DA Place for the DBA" ( :59)

been partially specified because the relational data model

has been recommended, the conceptual schema has been

defined, and an implementation plan provided for the

logical and physical schemas. The DBA functioun is respon-

*sible for designing and implementing data independence and

data integrity into the data base. Data independence is

achieved when the requirements of a design task (logical

schemas) are revealed to the designer and the storageLI
representation (physical schema) used in the implementation

is hidden. This also implies that any changes to the

physical schema or to the logical schema will have no

effect on the other schema.

The DBA must define a strategy for backup and

recovery. A backup schedule must be identified and

enforced by the DBA. The recovery strategy must describe
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the actions to minimize damages caused by human error, or

hardware and software failures. The system and data should

also be repaired with as little effect as possible on the

rest of the system.

Set Goals. The DBA should also set goals (i.e.,

policies, standards, and procedures (32) for the system.

For example, these may include:

1. Response times--i.e., 90 percent of single-

element queries should take less than five seconds between

query entry completion and beginning of response.

2. Backup--i.e., backup will be available for all

design data results that have been saved for an hour and

all input design data entered at least four hours ago

should also be backed up. Also backup for all deleted

data up to two weeks ago.

3. Deadlock--i.e., there should be less than two

deadlocks per year.

4. Size--i.e., there should be the capability to

access a certain number of data iLems and be able to

process designs of certain sizes (number of active elemunts

approximately 100K, etc.).

There must also be documentation and conLiguration

control of the design data (PD and L11 data). The DBA must

make sure that the data base reprcocntations (conceptual,

logical, and physical) are well documented. This
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documentation is absolutely vital for the DBA's responsi-

bilities. Documentation of the standardized interfaces

between DA System components and the hardware dependent

. code module documentation is essential to the life of the

data base and the system in which it resides.

The final point concerns the responsililities that

accompany the role of the DBA. The DBA has access to all

of the data in the system and to all the software of the

system. These privileges provide the DBA with a view of

the system that the designer does not see. It is a total

system view, and it can be seen at all three levels: con-

ceptual, logical, and physical. While it is necessary that

the DBA have these views and capabilities, it is also

* necessary to have some system of checks and balances among

the members of the DBA team. Trust of the DBA is neces-

sary, but it is also important that no one person has

absolute power. There are many ways to deter abuse, such

as preventing the DBA from writing application programs

against user data, or by partitioning the passwords and

access rights among the DBA team. These considerations

should not be extreme in the educational environment of

this report. The important factor here is to prevent

accidental data corruption.

DBA Tools. The DBA has several specialized tools

and utility programs that provide invaluable help to the
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DBA Function. Some of these routines include:

1. Loading routines, which create an initial

version of the data base.

2. Data base compaction routines, which are use-

ful for reducing unused data or obsolete data in the

(PD) design data areas.

3. Journaling routines, for both the data base

operations and EXEC (designer) operations. These are good

for historical reference, data base reconstruction, and

statistical analyses.

4. Recovery routines that restore the data base

after hardware and software failure.

5. Statistical analysis routines provide the

*V performance evaluations of the software, hardware, DBMS

queries, and optimization techniques (27:27).

6. Report Generation provides routine and extra-

ordinary information required for use by the DBA function

(26:465-476).

The Data Dictionary is one of the most useful

4 tools the DBA can have. It contains the descriptions of

all the data in the data base. Also, the conceptual,

logical, and the physical schemas are stored here. (The

logical schema is actually implemented in pieces (par-

titioned) in the APIs, but the overall logical schema

description is in the Data Dictionary.) Each task view,

or partition of the logical schema, contains the data used
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and generated. It also contains the format of the data

required for a design task. The Data Dictionary will also

contain a cross-reference listing showing which APs use

which relations and which specific data items.

The other tools that are used in conjunction with

the DBMS that the DBA uses are Data Description Language

(DDL) and Data Manipulation Language (DML) supplied with

commercial DBMS. These tools are used to create, load,

update, and change the data base, especially the PI data

area. The DDL provides the means to create the data

organization for use by the DBMS once it has been designed.

Thus, the DDL will be used to specify the Canonical Schema

that has been described in this report. The DML provides

the mechanisms for retrieving records from the structure

that has been defined by the DDL.

DBA Functions During

System Implementation

The DBA function must (repeat must) use software

engineering tools and techniques, during the design, imple-

mentation, and management of the entire DA System. Rele-

vant software engineering tools and techniques to be used

(as seen in Appendix D) can be classified according to the

4 system life cycle: Requirements Specification, Design,

Implementation, Testing, Maintenrince, and Documentation.

The design requirements for the EXEC should be

specified by the DBA. The APs to be integrated into the
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DA System and the designer functions to be supported by

the EXEC also need to be specified by the DBA. The DBA

must verify and coordinate the design and implementation

of Challenges 1, 2, 3, 4, and 5. This includes planning

and coordinating the DA System changes and growth, as

described in Challenge 5. Two excellent references for

the DBA managing the development and implementation of

these challenges are Productivity in a Data Base Environ-

ment (13) and Design Review Methodology for a Data Base

Environment (31)

The DBA must maintain and update hardware and

software capabilities which includes: (1) acquiring new

hardware and software; (2) maintaining the contractual

activities of this procurement; and (3) monitoring the

student support of software research, development, con-

version, and update. (If there exists common hardware and

software especially operating system, among other DOD

agencies, universities, and research facilities involved

with microelectro)nic design, it would be especially help-

4 ful to form an alliance. Then software could be easily

shared, and updated software need only be changed once

and then distributed. There are many advantages to an

alliance such as this, not the least being interchange

of knowledge and shared resources.)

The DBA should analyze the performance of the DA

N" ,System and evaluate the physical schema to see if
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frequently used data can be optimized (data migration).

For example, response time is a good first-cut evaluation

parameter. The DBMS queries and commands can also be

evaluated to find candidates for query optimization.

The DBA must, for each designer on the DA System,

issue an ID# and verify that a Project Dependent data

area is created and available to the designer. Access to

the DA System must also be controlled through passwords

and/or ID#s.

Once the DA System is up and running, the designers

will notice a gap between expected and actual DA System

capabilities. In a prioritized manner, these insufficient

capabilities should be added or improved to minimize inter-

ference; all such additions and improvements should be

done in a background mode, which will be transparent to

the designers using the system.

Analyses. Depending on the complexity of the DA

System, several analyses may have to be performed before

and during system implementation. These analyses are

briefly described:

1. Operational/Functional Shakedown, which shows

- the actual capabilities that work is designed. These

include validating the functions of each component. It

is especially important to validate the DBMS read, write,

and change functions, because if the system will not

4 8
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support reliable data operations it is worthless until

corrected.

2. Verification of Data Content after the data

has been integrated. Thu designers using the DA System must

be able to be confident that the data stored in the IDDB

will retain its integrity. The data must also be reveri-

fied after several tasks execute, and thus use, store, and

generate design data. This will help ensure that the DA

System component actions are correctly integrated and thus

will maintain data integrity.

3. Monitor the System Performance by performing

systems analyses and performance evaluations. Statistical

analyses of data contents, system activity, response

times for queries, and data storage requirements should

also be generated. Query optimization techniques also need

information concerning utilizations of devices, relation

schemes and relations. These evaluations will keep the

DBA alert for new designer needs, such as additional. or

changed design tasks or EXEC function, and other evolutionary

effects on the DA System's environment. This monitoring

function aids the DBA in identifying and, thus, respond-

ing to changes in requirements of the system and the

designers who use the system.
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Appendix A

Design Task Data Diagrams

The following Design Task Data Diagrams describe

design task-views. The descriptive data items used in

these diagrams are attributes of a Relation's Details.

The data is grouped into three categories:

INPUT (left); CONTROL (upper); OUTPUT (right).

The design task is labeled in the middle box.

As previously mentioned, because of the generic

data concept, many of the design tasks require much of

the same data. However, a closer examination showing the

specific data required by a design task, reveals the

unique specific data requirements of each task. The

detailed data descriptions are expansions of some of the

relations which provide good examples.

The design tasks included are the major, fre-

quently used design tasks. They are provided to aid the

reader in understanding the data requirements of the tasks,

the specific data, the generic data, and the relationship

of the specific and generic data. It also shows the

specification of the generic data into Relations, which are

the building blocks of the data organization of the IDDB.
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Appendix B

Glossary of Terms

Data Base--a collection of multiple record types, containing
the relationships between records, data aggregates,
and data items (24:13). Another definition of data
bases states that it is a collection of stored opera-
tional data used by the application systems of some
particular enterprise (26:4). Since, in most systems,
the term data base does not refer to all the record
types, but to a specified collection of them. There can
be several data bases in a system; however, the con-
tents of each data base are considered disjoint.

Data Base System--a collection of data bases. There are
three ways that data is organized in a data base:
external, global logical data, and physical storage.

External Organization--concerned with the application pro-
qrammer's view of the data. The programmer's view of
the data is inherently defined by the application
program being used.

Global Logical Base Organization--the overall organization
or conceptual model for the data base from which
multiple external organizations may be derived. It is
the logical view of the data, entirely independent of
the physical storage organization. It will be
described in a data definition language which is part
of the DBMS.

Physical Storage Organization--concerned with the physical
representation, layout, and organization of the data
on the storage units. It is concerned with the indices,
pointers, chains, and other means of physically locating
records, overflow areas, and how data operations
(insert, delete, etc.) are perfr-rmed on the storage
medium.

Defaults--data categories that belong to the Project
Independent data area. Each Application Progranm has
default parameter values or Defaults.
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Default Changes--data categories that belong to the Project
Dependent data area. The user may make changes to
the Default values; these changes are Default Changes.

Key--a key has two properties: (1) it uniquely identifies
a data item or tuple, and (2) it is nonredundant.
This means that no prime attribute can be discarded
without destroying the uniqueness ploperty of 1.

Prime Attribute--an attribute that is a member of several
other prime attributes that constitutes the key.

Non-Prime Attribute--an attribute that is not a member of
a key.

Schema--the overall logical data base description is often
referred to as the schema, an overall model of the data,
a conceptual model, or a conceptual schema. The con-
ceptual model, then, is a view of the total data base
content, and the conceptual schema is a definition of
this view. The schema is a chart of the types of the
data used, the names of the entities and attributes,
and their relationships. Thus, the schema can be viewed
as a skeleton upon which the data from the enterprise
is attached.

WSub-Schema--simply one application programmer's view (i.e.,
an application program's data "expectation"). Many
different sub-schemas can be derived from one schema.
Two reasons for the sub-schema are to help avoid data
complexity, where possible, and to aid in data security.

Task--a group of small related processes to be performed
by Application Programs. Also a Design Task.

Task-View--the data requirements of a task. These require-
ments are the data, data format, and data type as
required for specific Application Programs. It can also
be a higher level view of the generic data requirements
of a design task. These two levels of views are seen
in the Design Task Data Diagrams of Appendix A.
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3Appendix C

Questionnaire

This questionnaire was informally used by the

author to gather the data requirements of the DA System.

There are two categories of questions:

1. Data Organization, and

2. Data Processing Requirements.

The first category identifies the data and the functional

dependencies of the data. The second category identifies

what transformations that the data undergoes and other

data operations (33:147-151; 34:141-144).
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QUESTIONNAIRE

A. Data Organization

1. What are the entities (data elements) of interest in
each application program? Names?

2. What facts (Attributes) for each entity are relevant?
Names?

3. What is the range of values for each attribute?

4. What are known dependencies between attributes of each
identity?

5. What are unique identifiers (Keys) for each entity
(if any)?

6. What are important relationships between entities?

7. What is the mapping property of each relationship?
(1:1, 1:N, N:M)

8. What is the meaning and implication of each relation-
ship?

9. What are the possible relationships, not used, but
still meaningful?

10. What combination of relationships make sense as separate,
identifiable relationships?

6B. Data Processing Requirements

1. What transactions are required by each application
program? (What are the overall and segmented operations
done by the program?)

2. What kind of data access is required by each trans-
action?

" 3. At what frequency is the operation done?
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6l

4. What entities, attributes, and relationships are
involved in each operation?

5. Is the processing of the operations priorized and/or
are some operations !one conditionally?

6. Is there an important prerequisite sequence for any
transaction? Are they sequential or independent (can
be run simultaneously)? What is the impact of the
iterations, what data is affected, which transactions
are affected?

7. How often are transactions done during a design cycle?

8. What is the output of each transaction; not the format,
but changed entities, attributes, and relationships
(include error codes).

9. What data, that has been retrieved or changed, must be
saved in a work area for the designer?

10. What type of input is required for the transaction?
(interactive, file, graphics, library (static), or
direct input from another transaction).

11. List FUTURE transactions and/or functions that may be
integrated into the system. Also, list which entities
and relations will be used.
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A ppendix D

Software Engineering Tools and Techniques

1. Requirements

Requirements analysis, definition, and specification--

understanding the problem precisely, developing unanbigu-

ous statements of system functions, decomposing the

problem into manageable subparts.

Management of software development--

Staff organization, budgeting, planning, system inte-

gration, personnel deployment.

"V

2. Desi n

Software design--

Use of well-defined methods for establishing the

logical structure of a software system, creation of

software "blueprint" and "breadboards."

examples:

- Structured Design (Yourdon-Constantine)

- Jackson Method

- Wernier-Orr Method

- SADT (SofTech)
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* "- HIPO Charts

- Program Design Language(s)

.. - Decision Tables

- Flow Charts

- Design Walkthroughs

3. Implementation

Systematic Programming Methodology--

Techniques for reliably producing programs that are

correct, including stepwise refinement and structured

programming.

Programming Tools and Environments--

Text editors, debugging tools, operating systems, pro-

gramming languages that support the programming process,

portability, standards enforcement, top-down implementa-

tion, code walkthroughs, and performance analyzers.

4. Testinq

Program Testing and Verification--

Construction of test cases to determine program correct-

ness and performance characteristics, techniques for

selecting Lest data, formal mathematical proof that a

program meets stated specifications.
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examples:

- Static Analyzers

- Dynamic Analyzers

- Execution Analyzers

- Test Data Generators

- Assertion Checkers

- Test Coverage Analyzers

Software Performance--

Analysis of algorithms, prediction, evaluation, and

improvement of performance.

5. Maintenance

Viability--

System fit to requirements, adaptability, maintain-

ability.

examples:

- Flow Chart Generators

- Data Dictionary

- Source Code Control

- Interface Analyzer,'Checker

6. Documentation

Formal and informal requirements definitions and

specifications, design representations, user manuals,
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program descriptions, program readability and commenting

practices.

examples:

- Requirements Specification

- Design Specification

- Unit Development Folders

- Test Plans and Procedures

- Test Results

- Maintenance Manuals

(Refs: 21:538-539; 16:44)
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